Alcoholic drink based on golden gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum): Chemical and sensory characterization

Authors

  • Liseth Mejía-Bustamante Oficina General de Emprendimiento Empresarial, Vicepresidencia de Investigación, Universidad Nacional Autónoma de Chota. Cajamarca
  • Rosi Vasquez-Cadenillas Oficina General de Emprendimiento Empresarial, Vicepresidencia de Investigación, Universidad Nacional Autónoma de Chota. Cajamarca.
  • Marco Terrones-Miranda Oficina General de Emprendimiento Empresarial, Vicepresidencia de Investigación, Universidad Nacional Autónoma de Chota. Cajamarca.
  • Milton Paredes-Goycochea Oficina General de Emprendimiento Empresarial, Vicepresidencia de Investigación, Universidad Nacional Autónoma de Chota. Cajamarca.
  • Johonathan Salazar-Campos Centro de Experimentación e Investigación, Vicepresidencia de Investigación, Universidad Nacional Autónoma de Chota, Cajamarca.

DOI:

https://doi.org/10.17268/agroind.sci.2022.03.15

Keywords:

S. cerevisiae, S. pastorianus, carotenoids, phenolic compounds, PCA

Abstract

Golden gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum) have bioactive components, which open up the possibility of finding new ways to industrialize them. The objective of the study was to report the chemical and sensory characterization of a new alcoholic beverage produced by mixtures of Physalis peruviana and Solanum betaceum fruits, through fermentation with Saccharomyces cerevisiae (Ale) and Saccharomyces pastorianus (Lager). The physicochemical characterization of the beverages obtained was determined by basic parameters such as alcoholic degree, pH, density, total soluble solids, which were analyzed using: the AOAC "Official Methods of Analysis". Total carotenoids were analyzed according to: mg b-carotene eq/100g; the total phenolic compounds were determined under the Folin Ciocalteus protocol; the color characteristics (L*, a* and b*) using computer vision and Python data analysis. The sensory characterization was established with the help of 60 panelists, who evaluated 8 characteristics (flower aroma, nut aroma, wood aroma, astringency, body, flower odor, nut odor, and wood odor). Through a principal component analysis (PCA) and clustering analysis, it was shown that the fermented Ale-25AG-75BE and Ale-50AG-50BE, presented greater preference with 60 and 80%, being represented by Clusters 3 and 4. Finally, this study shows the feasibility of using mixtures of goldenberry and tree tomato to produce fermented alcoholic beverages, which could be inserted into the market as a new product.

References

Acosta-Quezada, P. G., Raigón, M. D., Riofrío-Cuenca, T., García-Martínez, M. D., Plazas, M., Burneo, J. I., Figueroa, J. G., Vilanova, S., & Prohens, J. (2014). Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chemistry, 169, 327-335.

Agencia de Noticia Andina (2021). Superalimento: Aguaymanto, el berrie dorado del Perú. Disponible en: https://andina.pe/agencia/video-superalimento-aguaymanto-berrie-dorado-del-peru%CC%81-53931.aspx

ARANA, O. (2017). Exportación de mermelada de tomate de árbol hacia el mercado de New York – Estados Unidos. Optar el título profesional de Licenciada en Administración de Negocios Internacionales. Lima, p. 126.

Based on Deunas, M., Irastorza, A., Fernandez, A. B. & Huerta, A. (1994). Microbial populations and malolactic fermentation of apple cider using traditional and modified methods. Journal of Food Science, 59(5), 1060.

Boeiraa, L., Bastos, P., Uchôaa, N., Bezerraa, J., Cáda, S., Duvoisin, S., Albuquerquec, P., Marb,J., Ramos, A., Machado, M. & Macield, L. (2020). Chemical and sensorial characterization of a novel alcoholic beverage produced with native acai (Euterpe precatoria) from different regions of the Amazonas state. LWT - Food Science and Technology, 117, 108632

Burini, J.A., Eizaguirre, J.I. & Loviso, C. (2021). Levaduras no convencionales como herramientas de innovación y diferenciación en la producción de cerveza, Revista Argentina de Microbiología, https://doi.org/10.1016/j.ram.2021.01.003

Cubillos, FA., Gibson, B., Grijalva-Vallejos, N., Krogerus, K. & Nikulin, J. (2019). Bioprospecting for brewers: exploiting natural diversity fornaturally diverse beers. Yeast, 36(3), 83-98.

Diep, T., Pook, C., Rush, E. & Yoo, M. (2020). Quantification of carotenoids, atocopherol, and ascorbic acid in amber, mulligan, and laird’s large cultivars of New Zealand Tamarillos (Solanum betaceum Cav.). Foods, 9, 769.

Diep, T. T., Pook, C., Yoo, M. J. Y. (2020). Physicochemical proper-ties and proximate composition of tamarillo (Solanum betaceum Cav.) fruits from New Zealand. Journal of Food Composition and Analysis, 92, 103563.

Falcón, P., Rosales, E. & Toscano, A. (2019). Efecto del tiempo de la maceración prefermentativa sobre la capacidad antioxidante, carotenos, vitamina c de una bebida fermentada de aguaymanto (Physalis peruviana L.) al estado maduro. Aporte Santiaguino, 12(2), 186 – 199.

Hernández, E., Vergara, J., Carlos, N., Inostroza, L., García, M., Villafuerte, U., Córdova, J., Birne, R., Alencastre, A., Peña, M., Tupiño, L. (2019). Diseño y elaboración de bebida de Aguaymanto (Physalis peruviana) enriquecida con kiwicha. Ciencia e Investigación, 22(1):35-40.

Hirst, M. B., & Richter, C. L. (2016). Review of aroma formation throughmetabolic pathways of Saccharomyces cerevisiae in beveragefermentations. Am J Enol Vitic, 4(3), 61-70.

Hurtado, N., Morales, A., González-Miret, L., Escudero-Gilete, M. & Heredia, F. (2009). Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chemistry, 117, 88–93.

Joshi, V. K., John, S. & Abrol, G. S. (2013a). Effect of addition of herbal extract and maturation on apple wine. International Journal of Food and Fermentation Technology, 3(2), 103–113.

Joshi, V. K., Sandhu, D. K. & Kumar, V. (2013b). Influence of addition of insoluble solids, different yeast strains and pectinesterase enzyme on the quality of apple wine. Journal of the Institute of Brewing, 119, 191–197.

Kelebek, H. & Selli, S. (2014). Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. Journal of Food Science and Technology, 51(6), 1094–1101.

Krogerus, K., Seppänen-Laakso, T., Castillo, S. & Gibson, B. (2017). Inheritance of brewing relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Microb Cell Fact, 16, 66.

Libkind, D., Hittinger, C. T., Valério, E., Gonçalves, C., Dover, J. & Johnston, M. (2011). Microbe domestication and the identification of the wild genetic stock of lager brewing yeast. Proceedings of the National Academy of Sciences, 108(35), 39–44.

Loviso, C. L., & Libkind, D. (2019). Síntesis y regulación de los compuestos del aroma y sabor derivados de la levadura en la cerveza: alcoholes superiores. Rev Argent Microbiol, 51(4), 386-397.

Málaga, B., Guevara, A., Araujo, M. (2013). Efecto del procesamiento de puré de aguaymanto (Physalis peruviana l.), sobre los compuestos bioactivos y la capacidad antioxidante. Rev Soc Quím Perú, 79(2), 162-174.

Maragatham, C., & Panneerselvam, A. (2011). Isolation, identification and characterization of wine yeast from rotten papaya fruits for wine production. Pelagia Research Library Advances in Applied Science Research, 2(2): 93-98.

Martin, D., Lopes, T., Correia, S., Canhoto, J., Paula, M., Marques, & Batista de Carvalho, L. (2021). Nutraceutical properties of tamarillo fruits: A vibrational study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 252, 119501

Meregildo, R., & Olivares, S. (2021). Obtención de una bebida alcohólica a partir de aguaymanto (Physalis peruviana) proveniente de Amazonas-Perú. Revista de Investigación Científica, 2(3), 73-80.

Miljic, U. D., & Puskas, S. V. (2014). Influence of fermentation conditions on production of plum (Prunus domestica L.) wine: a response surface methodology approach. Hemijska Industrija, 68, 199–206.

Obregón, A., Talledo, G. & Rodríguez, & Pinedo, R. (2021). Frutos nativos de Perú como fuente potencial de nutrientes, compuestos bioactivos y capacidad antioxidante en el requerimiento nutricional de grupos vulnerables. Rev. Fac. Agron., 38, 421-440.

Ordoñez-Gómez, E., Reátegui-Díaz, D. & Villanueva-Tiburcio, J. (2018). Polifenoles totales y capacidad antioxidante en cáscara y hojas de doce cítricos. Scientia Agropecuaria, 9(1), 113-121.

Pires, E., Teixeira, J., Brányik, T. & Vicente, A. (2014). Yeast: The soul ofbeer’s aroma - A review of flavour-active esters and higheralcohols produced by the brewing yeast. Appl Microbiol Biote-chnol, 98(5), 37- 49.

Postigo, V., Schuurman, T. E., & Arroyo, T. (2022). Non-Conventional Yeast: Behavior under Pure Culture, Sequential and Aeration Conditions in Beer Fermentation. Foods, 11(22), 3717.

PROMPERU (2020). Perú entre los países con mayor biodiversidad del planeta. https://peru.info/es-pe/turismo/noticias/3/18/peru-entre-los-paises-con-mayor-biodiversidad-del-planeta

Puente, L., Pinto-Muñoz, C., Castro, E., Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740.

Roger Álvarez, R., Manzano, J., Materano, W. & Valera, A. (2009). Caracterización química y sensorial del vino artesanal de tomate de árbol (Cyphomandra betaceae (Cav.) Sendth). Revista UDO Agrícola, 9(2), 436-441.

Romero-Rodríguez, R., Durán-Guerrero, E., Castro, R., Díaz, A. B., & Lasanta, C. (2022). Evaluation of the influence of the microorganisms involved in the production of beers on their sensory characteristics. Food and Bioproducts Processing, 135, 33-47

Sannino, C., Mezzasoma, A., Buzzini, P., & Turchetti B. (2019). Non-conventional Yeasts: from Basic Research to Application. Switzerland AG: Springer Nature, p.361.

Santos, R., Biasoto, A., Rybka, A., Castro, C., Aidar, S., Borges, G. & Silva, F. (2021). Physicochemical characterization, bioactive compounds, in vitro antioxidant activity, sensory profile and consumer acceptability of fermented alcoholic beverage obtained from Caatinga passion fruit (Passiflora cincinnata Mast.). LWT - Food Science and Technology, 148, 111714

Viera, W., Samaniego, I., Camacho, D., Habibi, N., Ron, L., Sediqui, N., ... & Brito, B. (2022). Phytochemical Characterization of a Tree Tomato (Solanum Betaceum Cav.) Breeding Population Grown in the Inter-Andean Valley of Ecuador. Plants, 11(3), 268.

Sevindik, O., Guclu, G., Agirman, B., Selli, S., … & Kelebek, H. (2022). Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices. Food Chemistry, 378, 132079.

Stewart, GG. (2017). Flavour Production by Yeast. En: Stewart GG, edi-tor. Brewing and Distilling Yeasts. Switzerland AG. Springer International Publishing; 325, 57-92.

Villacreces, S., Blanco, C. A., & Caballero, I. (2022). Developments and characteristics of craft beer production processes. Food bioscience, 45, 101495.

Wang, R., Sun, Q., & Chang, Q. (2015). Soil types effect on grape and wine composition in helan mountain area of ningxia. PLoS One, 10(2), e0116690.

Published

2022-12-19

How to Cite

Mejía-Bustamante, L. ., Vasquez-Cadenillas, R. ., Terrones-Miranda, M. ., Paredes-Goycochea, M. ., & Salazar-Campos, J. . (2022). Alcoholic drink based on golden gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum): Chemical and sensory characterization. Agroindustrial Science, 12(3), 355-363. https://doi.org/10.17268/agroind.sci.2022.03.15

Issue

Section

Artículos de investigación