Influencia del efecto Allee fuerte en las presas y de la competición entre los depredadores en modelos de depredación del tipo Leslie-Gower

Autores

DOI:

https://doi.org/10.17268/sel.mat.2020.02.12

Palavras-chave:

Modelo depredador-presa, respuesta funcional, bifurcación, ciclo límite, curva separatriz, estabilidad

Resumo

Es bien sabido que las interacciones depredador-presa dependen fuertemente tanto de la respuesta funcional, como de las tasas de crecimiento de la población de presas y depredadores.

En este trabajo, el estudio se hará en base a un modelo de depredación del tipo Leslie-Gower, descrito por un sistema bidimensional de ecuaciones diferenciales ordinarias (EDOs), asumiendo que la población de presas es afectada por un efecto Allee fuerte y que los depredadores disponen de un alimento alternativo.

La respuesta funcional se asumirá lineal, la cual es presa-dependiente y monótonamente creciente. A su vez, la ecuación de crecimiento de los depredadores también se considerará del tipo logístico, donde la capacidad de soporte del medio ambiente para los depredadores se considera proporcional al tamaño de la población de presas.

Entre los resultados obtenidos más importantes se tiene que para un mismo conjunto de parámetros, existen diferentes comportamientos de las soluciones del sistema, pues pueden existir dos puntos de equilibrio atractores. Entonces, las poblaciones pueden coexistir alrededor de tamaños poblacionales fijos, o bién, la población de presas puede extinguirse.

Estimamos que los resultados analatícos obtenidos tienen una adecuada interpretación ecológica, bajo los supuestos subyacentes en la modelación de la interacción de depredación con EDOs.

Referências

Bacaër N. A short history of Mathematical Population Dynamics. New York: Springer-Verlag; 2011.

Bazykin AD. Nonlinear Dynamics of interacting populations. Singapore: World Scientific Publishing Co. Pte. Ltd. 1998.

Beddington JR. Mutual interference between parasites or predators and its effect on searching efficiency. J. of Animal Ecology. 1975; 44(1):331-340.

Berec L, Angulo E, Courchamp F. Multiple Allee effects and population management. Trends in Ecology and Evolution. 2007; 22:185-191.

Berryman AA, Gutierrez AP, Arditi R. Credible, parsimonious and useful predator-prey models - A reply to Abrams, Gleeson and Sarnelle. Ecology. 1995; 76:1980-1985.

Birkhoff G, Rota GS. Ordinary Differential Equations. (4th ed.) New York: John Wiley & Sons; 1989.

Boukal DS, Berec L. Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters. J. of

Theoretical Biology. 2002; 218:375-394.

Boukal DS, Berec L. Modelling mate-finding Allee effects and populations dynamics, with applications in pest control. Population

Ecology. 2009; 51:445-458.

Chicone C. Ordinary differential equations with applications. (2nd edition). Texts in Applied Mathematics 34. New York:

Springer; 2006.

Clark CW. Mathematical Bioeconomic: The optimal management of renewable resources. Second edition. New York: John

Wiley and Sons; 1990.

Courchamp F, Clutton-Brock T, Grenfell B. Inverse dependence and the Allee effect. Trends in Ecology and Evolution. 1999;

:405-410.

Courchamp F, Berec L, Gascoigne J. Allee effects in Ecology and Conservation. New York: Oxford University Press; 2007.

DeAngelis D, Goldstein R, O’Neill R. A model for tropic interaction. Ecology. 1975; 56:881-892.

Dennis B. Allee effects: population growth, critical density, and the chance of extinction. Nat. Resource Modeling. 1989; 3:481-538.

Dumortier F. Singularities of vector fields. IMPA Brazil: Monografías de Matemática Vol. 32; 1978.

Freedman HI. Deterministic Mathematical Model in Population Ecology, New York: Marcel Dekker; 1980.

Freedman HI. Stability analysis of a predator-prey system with mutual interference and density-dependent death rates. Bull. of Math. Biology. 1979; 41:67-78.

Gaiko VA. Global Bifurcation theory and Hilbert s sixteenth problem.New York: Math. and its Applications 559, Kluwer Academic Publishers; 2003.

Gause GF. The struggle for existence. New York: Dover; 1934.

Goh B-S. Management and Analysis of Biological Populations. New York: Elsevier Scientific Publishing Company; 1980.

González-Olivares E, Sáez E, Stange E, Szantó I. Topological description of a non-differentiable bio-economics model, Rocky

Mountain J. of Math. 2005; 35(4):1133-1155.

González-Olivares E, González-Yañez B, Mena-Lorca J, Ramos-Jiliberto R. Modelling the Allee effect: Are the different mathematical forms proposed equivalents?. In: R. Mondaini (Ed.) Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006. Rio de Janeiro: E-papers Servic¸os Editoriais Ltda.; 2007. p. 53-71.

González-Olivares E, Mena-Lorca J, Rojas-Palma A, Flores JD. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. App. Math. Modelling. 2011; 35:366-381.

González-Olivares E, Cabrera-Villegas J, Córdova-Lepe F, Rojas-Palma A. Competition among predators and Allee effect on prey: their influence on a Gause-type predation model. Math. Problems in Engineering. vol. 2019. 2019; Article ID 3967408, 19 pages.

González-Olivares E, Arancibia-Ibarra C, Rojas-Palma A, González-Yañez B. Dynamics of a Leslie-Gower predation model considering a generalist predator and the hyperbolic functional response. Math. Biosciences and Engineering. 2019; 16(6):7995-8024.

González-Olivares E, Gallegos-Zuñiga J. Estabilidad en un modelo de depredación del tipo Leslie-Gower modificado considerando competencia entre los depredadores (Stability in a modified Leslie-Gower type predation model considering competence among predators). Selecciones Matemáticas. 2020; 7(1):10-24.

González-Olivares E, Rojas-Palma A. Global stability in a modified Leslie-Gower type predation model assuming mutual interference among generalist predators. Mathematical Biosciences and Engineering. 2020; 17(6):7708–7731.

Kot M. Elements of Mathematical Ecology. Cambridge, New York: Cambridge University Press; 2003.

Kuznetsov YA. Elements of applied bifurcation theory. (3rd ed). New York: Springer-Verlag; 2004.

Leslie PH. Some further notes on the use of matrices in population mathematics. Biometrica. 1948; 35:213-245.

Leslie PH, Gower JC. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika. 1960; 47:219-234.

Liermann M, Hilborn R. Depensation: evidence, models and implications. Fish and Fisheries. 2001; 2:33-58.

May RM. Stability and complexity in model ecosystems. (2nd edition). Princeton: Princeton University Press; 2001.

Monzón P. Almost global attraction in planar systems., System and Control Letter 2005; 54:753-758.

Murray JD. Mathematical Biology I. An Introduction (3rd ed.) New York: Springer; 2002.

Philip JR. Sociality and sparce populations. Ecology. 1957; 38:107-111.

Rantzer A. A dual to Lyapunov’s stability theorem. System and Control Letter 2001; 42:161-168.

Scudo FM, Ziegler JR. The golden age of Theoretical Ecology 1923-1940. Lecture Notes in Biomathematics 22. Berlin: Springer-Verlag; 1978.

Stephens PA, Sutherland WJ. Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution. 1999; 14:401-405.

Stephens PA, Sutherland WJ, Freckleton RP. What is the Allee effect?. Oikos. 1999; 87:185-190.

Thieme HR. Mathematics in Population Biology. Princeton Series in Theoretical and Computational Biology, Princeton: Princeton University Press; 2003.

Turchin P. Complex population dynamics. A theoretical/empirical synthesis, Monographs in Population Biology 35. Princeton: Princeton University Press; 2003.

Vera-Damián Y, Vidal C, González-Olivares E. Dynamics and bifurcations of a modified Leslie-Gower type model considering a Beddington-DeAngelis functional response. in: press Mathematical Methods in the Applied Sciences. 2019; 42:3179-3210.

Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della R. Accademia dei Lincei, S.VI, IT. 1926; II; 31-113.

Watt KEF. A Mathematical model for the effect of densities of attacked and attacking species on the number attacked. Canadian

Entomologist. 1959; 91(3):129-144.

Publicado

2020-12-25

Como Citar

González-Olivares, E., & Rojas-Palma, A. (2020). Influencia del efecto Allee fuerte en las presas y de la competición entre los depredadores en modelos de depredación del tipo Leslie-Gower. Selecciones Matemáticas, 7(02), 302-313. https://doi.org/10.17268/sel.mat.2020.02.12

Edição

Seção

Articles

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2