Fundamental response in the vibration control of buildings subject to seismic excitation with ATMD

Autores/as

  • Fidel Jara Huanca Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú.
  • Obidio Rubio Instituto de Investigación en Matemáticas, Departamento de Matematicas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Julio Ruiz Claeyssen PPGMAp, Universidade Federal do Rio Grande do Sul, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2023.01.13

Palabras clave:

Earthquake, control, vibrating system, fundamental matrix solution, LQR problem

Resumen

The linear quadratic regulator for vibration systems subject to seismic excitations is discussed in his own physical newtonian space as a second-order linear differential system with matrix coefficients. The linear quadratic regulator leads to a fourth-order system and second-order transversality conditions. Those systems are studied with a matrix basis generated by a fundamental matrix solution.

Citas

Murty C, Goswami R, Vijayanarayanan A, Mehta V. Earthquake Behaviour of Buildings, Gujarat State Disaster Management Authority. Gujarat, India. 2002.

Datta T. A state-of-the-art review on active control of structures. ISET Journal of Earthquake Technology. 2003; 40(1):1–17.

Ikeda Y. Active and semi-active control of buildings in japan. Journal of Japan Association for Earthquake Engineering. 2004; 4(3).

Yang J, Long F, Wong D. Optimal control of nonlinear structures. Journal of Applied Mechanics. 1988; 55(4):931–938.

Mohammadi R, Ghamari H, Farsangi E. Active control of building structures under seismic load using a new nniform deformation-based control algorithm. Structures. 2021; 33:593–605.

Sabetahd R, Mousavi S, Poursorkhabi R, Mohammadzadeh A, Zandi Y. Response attenuation of a structure equipped with atmd under seismic excitations using methods of online simple adaptive controller and online adaptive type-2 neural-fuzzy controller. Computational Intelligence and Neuroscience. 2022.

Skelton R. Dynamic Systems Control. John Wiley. 1988.

Oshman Y, Inman D, Laub A. Square-root state estimation for second order large space structures models. Guidance Control Dynamics.1989; 12(5):698–708.

Ram Y, Inman D. Optimal control for vibrating systems. Mechanical Systems and Signal Processing. 1999; 13(6):879–892.

Claeyssen J. On predicting the response of non-conservative linear vibrating systems by using the dynamical matrix solution. Journal of Sound and Vibration. 1990; 140(1):73–84.

Claeyssen J, Canahualpa G, Jung C. A direct approach to second-order matrix non-classical vibrating equations. Applied Numerical Mathematics. 1999; 30(1):65–78.

Pereslavtseva O. Calculation of the characteristic polynomial of a matrix. Discrete Mathematics and Applications. 2011; 21(1):109–129.

Yang J, Akbarpour A, Ghaemmghami P. Instantaneous optimal control laws for tall buildings under seismic excitations. in: Tech. Report NCEER 87-0007, National Center for Earthquake Engineering Research. 1987

Yang J, Li Z. Instantaneous optimal control for linear, nonlinear and hysteretic structures: Stable controllers. in: Tech. Report NCEER-TR-91-0026, National Center for Earthquake Engineering Research. Buffalo. 1991.

Zhang J. Optimal control for mechanical vibration systems based on second-order matrix equation. Mechanical Systems and Signal Processing. 2002; 16(1):61–67.

Descargas

Publicado

2023-07-26

Cómo citar

Jara Huanca, F. ., Rubio , O. ., & Ruiz Claeyssen , J. (2023). Fundamental response in the vibration control of buildings subject to seismic excitation with ATMD. Selecciones Matemáticas, 10(01), 147 - 157. https://doi.org/10.17268/sel.mat.2023.01.13

Artículos más leídos del mismo autor/a

1 2 > >>