Estabilidad en un modelo de depredación del tipo Leslie-Gower modificado considerando competencia entre los depredadores

Autores/as

DOI:

https://doi.org/10.17268/sel.mat.2020.01.02

Palabras clave:

Modelo depredador-presa, respuesta funcional, bifurcación, ciclo límite, curva separatriz, estabilidad

Resumen

En la literatura ecológica, la interferencia (autointerferencia) o competencia entre depredadores para realizar la captura de sus presas, ha sido modelada por diferentes formulaciones matemáticas. En este trabajo, estableceremos las propiedades dinámicas de modelos de depredación del tipo Leslie-Gower, en el que se incorpora una de estas formas, descrita por la función b (y) = yalfa, con 0 < alfa < 1.

La principal dificultad del análisis se debe a que esta función no es diferenciable para y = 0, y la matriz Jacobiana no está definida en los puntos de equilibrio sobre el eje horizontal (eje x).

Previamente mostramos un resumen con las propiedades fundamentales del modelo del tipo Leslie-Gower, con el objeto de efectuar un adecuado análisis comparativo con modelos donde se incorpora la auto-interferencia entre los depredadores.

Para reforzar nuestros resultados se muestran algunas simulaciones numéricas.

Citas

Aguirre P., González-Olivares E., Sáez E. Two limit cycles in a Leslie.Gower predator-prey model with additive Allee effect. Nonlinear Analysis: Real World Applications. 2009; 10:1401-1416.

Aguirre P, González-Olivares E, Sáez E. Three limit cycles in a Leslie-Gower predator–prey model with additive Allee effect. SIAM Journal on Applied Mathematics. 2009; 69:1244-1262.

Arancibia-Ibarra C., and González-Olivares E. A modified Leslie-Gower predator-prey model with hyperbolic functional response and Allee effect on prey In R. Mondaini (Ed.) BIOMAT 2010 International Symposium on Mathematical and Computational Biology. World Scientific Co.Pte. Ltd., Singapore. 2011; 146-162.

Arrowsmith D.K, Place C.M. Dynamical System. Differential equations, maps and chaotic behaviour. Chapman and Hall; 1992.

Aziz-Alaoui M.A., Daher Okye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Applied Mathematics Letters. 2003; 16:1069-1075.

Bacaër N. A short history of Mathematical Population Dynamics. Springer-Verlag. 2011.

Bazykin A. Nonlinear Dynamics of interacting populations. World Scientific Publishing Co. Pte. Ltd., 1998.

Berryman A. A., Gutierrez A.P., Arditi R. Credible, parsimonious and useful predator-prey models. A reply to Abrams, Gleeson and Sarnelle, Ecology. 1995; 76:1980-1985.

Birkhoff G.D, Rota G.C. Ordinary Differential Equations (Fourth Edition), John Wiley and Sons, New York; 1989.

Chicone C. Ordinary differential equations with applications. 2nd edition, Texts in Applied Mathematics 34, Springer, 2006.

Clark C.W. Mathematical Bioeconomic: The optimal management of renewable resources. (2nd edition). John Wiley and Sons,1990.

Clark C.W. The worldwide crisis in fisheries: Economic models and human behavior. Cambridge Univerity Press, 2006.

Coleman C.S. Hilbert’s 16th. Problem: How many cycles? In: Braun M., Coleman C.S., and Drew D. (Eds.). Differential Equations Model, Springer-Verlag. 1983; 279-297.

Dumortier F., Llibre J., Artïs J.C. Qualitative theory of planar differential systems, Springer; 2006.

Epstein J.M. Nonlinear Dynamics, Mathematical Biology, and Social Science, Addison-Wesley, 1997.

Freedman H.I. Deterministic Mathematical Model in Population Ecology, Marcel Dekker, 1980.

Freedman H.I. Stability analysis of a predator-prey system with mutual interference and density-dependent death rates. Bulletin of Mathematical Biology. 1979; 41:67-78.

Gallego-Berrío L.M. Consecuencias del efecto Allee en el modelo de depredación de May-Holling-Tanner. Tesis de Maestría, Maestría en Biomatemáticas Universidad del Quindío, Armenia, Colombia, 2004.

Gallegos-Zuñiga J. Modelo depredador-presa del tipo Leslie-Gower considerando interferencia entre los depredadores. Trabajo para optar al grado de Licenciado en Matemática, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile 2014.

Gause G.F. The Struggle for existence. Dover, 1934.

Geritz S., Gyllenberg M. A mechanistic derivation of the DeAngelis-Beddington functional response. Journal of Theoretical Biology. 2012; 314:106-108.

Goh B-S. Management and Analysis of Biological Populations. Elsevier Scientific Publishing Company, 1980.

González-Yañez B., González-Olivares E., Mena-Lorca J. Multistability on a Leslie-Gower Type predator-prey model with nonmonotonic functional response. In R. Mondaini and R. Dilao (eds.), BIOMAT 2006 - International Symposium on Mathematical and Computational Biology, World Scientific Co. Pte. Ltd., 2007; 359-384.

González-Olivares E., Mena-lorca J., Rojas-Palma A., Flores J.D. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. Applied Mathematical Modelling. 2011; 35:366-381.

González-Olivares E., Arancibia-Ibarra C., Rojas A, González-Yañez B. Dynamics of a Leslie-Gower predation model considering a generalist predator and the hyperbolic functional response. Mathematical Biosciences and Engineering. 2019; 16(6):7995-8024.

Holling C.S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canadian Entomologist. 1959; 91:293-320.

Korobeinikov A.A. Lyapunov function for Leslie-Gower predator-prey models. Applied Mathematical Letters. 2001; 14:697-699.

Leslie P.H. Some further notes on the use of matrices in population mathematics. Biometrika. 1948; 35:213-245.

Leslie P.H, and Gower J.C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrka. 1960; 47:219-234.

May R.M. Stability and complexity in model ecosystems (2nd edition), Princeton University Press. 2001.

Murray J.D. Mathematical Biology. Springer - Verlag New-York 1989.

Perko L. Differential Equations and Dynamical Systems. Springer-Verlag, 1991.

Sáez E., González-Olivares E. Dynamics on a predator-prey model. SIAM Journal of Applied Mathematics. 1999; 59:1867-1878.

Scudo F.M., Ziegler J.R. The golden age of Theoretical Ecology 1923-1940. Lecture Notes in Biomathematics 22. Springer-Verlag, Berlin 1978.

Tanner J.T. The stability and the intrinsic growth rates of prey and predator populations. Ecology. 1975; 56(4):855-867

Taylor R.J. Predation. London: Chapman and Hall, 1984.

Tintinago-Ruiz P.C., Gallego-Berrío L.M., González-Olivares E. Una clase de modelo de depredación del tipo Leslie-Gower con respuesta funcional racional no monotónica y alimento alternativo para los depredadores. Selecciones Matemáticas. 2019; 06(2):204-216.

Turchin P. Complex population dynamics. A theoretical/empirical synthesis. Monographs in Population Biology 35 Princeton University Press 2003.

Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della R. Accademia dei Lincei, S.VI, IT 1926; II:31-113.

Vera-Damián Y., Vidal C., González-Olivares E. Dynamics and bifurcations of a modified Leslie-Gower type model considering a Beddington-DeAngelis functional response. Mathematical Methods in the Applied Sciences. 2019; 42:3179-3210.

Descargas

Publicado

2020-07-25

Cómo citar

González-Olivares, E., & Gallegos-Zuñiga, J. (2020). Estabilidad en un modelo de depredación del tipo Leslie-Gower modificado considerando competencia entre los depredadores. Selecciones Matemáticas, 7(01), 10-24. https://doi.org/10.17268/sel.mat.2020.01.02

Número

Sección

Articles

Artículos más leídos del mismo autor/a