Centenary of the first predator-prey model. Revision, modifications and challenges of this fundamental ecological interrelationship

Authors

  • Eduardo González-Olivares Pontificia Universidad Católica de Valparaíso, Chile.
  • Alejandro Rojas-Palma Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
  • Marcelo Eduardo Alberto Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza Argentina.
  • Francisco J. Reyes-Bahamon Universidad Surcolombiana, Neiva, Huila, Colombia.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.16

Keywords:

Predator-prey model, refuge, stability, bifurcations, limit cycles, separatrix curves

Abstract

For many applied mathematicians, and especially for biomathematicians, the first model proposed by the Italian mathematician Vito Volterra in 1926 is well known, describing for the first time the relationship between a predator and its prey. This model coincided with a similar system, on chemical reactions, proposed by the physicist-chemist Alfred J. Lotka years earlier. Since then, and with an epidemic character, variations, modifications, and the incorporation of new phenomena or ecological principles have been formulated to ”make more realistic” the foundations and studies on this fundamental interaction between two species of living beings. In this work, we will give a brief description of the historical context of this seminal model, emphasizing its main properties; then we will add specific modifications, briefly outlining properties of some of them.

References

Bacaer N. A short history of Mathematical Population Dynamics. London: Springer; 2011.

Bazykin AD. Nonlinear dynamics of interacting populations. Singapore: World Scientific; 1998.

Bassanezi RC. The Biomathematics in IMECC, In C Lavor and FAM Gomes (eds) Advances in Mathematics and Applications, Celebrating 50 years of the Institute of Mathematics, Statistics and Scientific Computing. University of Campinas: Springer; 2018; 25-65.

De León M, Gómez Corral A. Las Matemáticas de la Biología. De las celdas de las abejas a las simetrías de los virus. Madrid: Editorial Catarata; 2018.

Volterra V. Variazioni e fluttuazioni del numero de individui in specie animali conviventi, Memorie della R. Accademia dei Lincei, S.VI, IT. 1926; 2:31-113.

Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926; 118:558-560.

Tyutyunova YV, Titova LI. From Lotka-Volterra to Arditi-Ginzburg: 90 years of evolving trophic functions, Biology Bulletin Reviews. 2020; 10(3) 167-185.

Lotka AJ. Elements of Physical Biology. Baltimore: Williams & Wilkins; 1925.

May RM. Stability and complexity in model ecosystems. 2nd Edition. Princeton: Princeton University Press; 2001.

Turchin P. Complex population dynamics. A theoretical/empirical synthesis. Mongraphs in Population Biology 35. Princiton: Princeton University Press; 2003.

Volterra V. Variazioni e fluttuazioni del numero de individui in specie animali conviventi, Memoria R. comitato talassografico italiano 131 1-142. English translation in The Golden Age of Theoretical Ecology: 1923- 1940 (F. M. Scudo and J. R. Ziegler, Eds.), Lecture Notes in Biomathematics. New York: Springer; 1978; Vol. 22: 65-236.

Volterra V. Variations and fluctuations of the number of individuals in animal species living together. Journal du Conseil, (J.Conseil Int. Explor. Mer.) 1928; 3(1) 3-51.

Goh BS. Management and Analysis of Biological Populations. Amsterdam: Elsevier Scientific Publishing Company; 1980.

Volterra V. Lec¸ons sur la theorie mathematique de la lutte pour la vie. Paris: Gauthiers-Villars (compiled by M. Brelot); (1931).

Gatto M. On Volterra and D’Ancona’s footsteps: The temporal and spatial complexity of ecological interactions and networks. J. of Zoology. 2009; 76(1):3-15.

Scudo FM. Vito Volterra and Theoretical Ecology. Theoretical Population Biology. 1971; 2:1-23.

Israel G, Millan Gasca A. The Biology of Numbers. The correspondence of Vito Volterra on Mathematical Biology. Boston: Springer; 2002.

Guerraggio A, Paoloni G. Vito Volterra. Berlin: Springer-Verlag; 2013.

Braun M. The principle of competitive exclusion in Population Biology. in (M. Braun, C. S. Coleman, and D. A. Drew eds.) Differential Equation Models, page 243, Chapter 17. New York: Springer-Verlag; 1983.

Braun M. Differential Equations and Their Application. fourth edition, Section 4-11 page 451. New York: Springer; 1993.

Braun M. Why the percentage of sharks caught in the Mediterranean Sea rose dramatically during World War I”, Chapter 15, in Differential Equation Models, M. Braun, C. S. Coleman, D. A. Drew, (eds.) New Yor: Springer-Verlag; 1983.

Cao F, Jiang J. The classification on the global phase portraits of two-dimensional Lotka-Volterra system. J. Dynam. Differential Equations. 2008; 20:797-830.

Schlomiuk D, Vulpe N. Global classification of the planar Lotka-Volterra differential systems according to their configurations of invariant straight lines. J. of Fixed Point Theory and Applications. 2010; 8:177-245.

Reyn JW. Phase portraits of a quadratic system of differential equations occurring frequently in applications. Nieuw Arch. Wiskd. 1987; 4(5):107-151.

Reyn J. Phase portrait of planar quadratic systems.New YorK: Springer; 2007.

Worz-Busekros A. A complete classification of all two-dimensional Lotka-Volterra systems. Differential Equations Dynam. Systems. 1993; 1:101-118.

González-Olivares E, Rojas-Palma A, López-Cruz R. Influence of the prey refuge use on the Volterra predation model: Influencia del uso de refugio por las presas en el modelo Volterra. Selecciones Matemáticas. 2024; 11(01):56 - 68.

Gause GF. The struggle for existence. Williams & Wilkins. Dover; 1934.

Freedman HI. Deterministic mathematical model in Population Ecology. New York: Marcel Dekker; 1980.

Leslie PH. Some further notes on the use of matrices in population mathematics, Biometrica. 1948; 35:213-245.

Kolmogorov AN. Sulla Teoria di Volterra della lotta per l’esistenza. G. 1st. Ital. Attuari. 1936; 7:74-80.

Coleman CS. Hilbert’s 16th. Problem: How many cycles? In: M. Braun, C. S. Coleman and D. A. Drew (Eds.), Differential Equations Models. New York: Springer; 1983; 279-297.

Kuznetsov YA. Elements of applied bifurcation theory, 4th ed. (Vol. 112). New York: Springer; 2023.

Tanner JT. The stability and the intrinsic growth rates of prey and predator populations, Ecology. 1975; 56(4):855-867.

González-Olivares E, Cabrera-Villegas J, Córdova-Lepe F, Rojas-Palma A. Competition among predators and Allee effect on prey: their influence on a Gause-type predation model. Mathematical Problems in Engineering. 2019; vol. 2019, Article ID 3967408, 19 pages.

González-Olivares E, Rojas-Palma A. Periodicidad en modelos de depredación del tipo Gause considerando colaboración entre los depredadores. Selecciones Matemáticas. 2021; 8(2):267-273.

García-Saldana JD, Rebollo-Perdomo S. Ciclos límite en el plano: Contribuciones desde Chile, CUBO, A Mathematical Journal. 2025; 27(2):391-410.

Berryman AA, Gutierrez AP, & Arditi R. Credible, Parsimonious and Useful Predator-Prey Models: A Reply to Abrams, Gleeson, and Sarnelle. Ecology. 1995; 76(6):1980–1985.

Holling CS. The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. The Canadian Entomologist. 1959; 91(5):293-320.

Taylor RJ. Predation. New York: Chapman and Hall; 1984.

Tintinago-Ruiz P., Rojas-Palma A., & González-Olivares E. Refuge used by prey as a function of predator numbers in a Leslie-type model. Refugio usado por las presas dependiente de la cantidad de depredadores en un modelo de tipo Leslie. Selecciones Matemáticas. 2024; 11(02):249-258.

Ruan S and Xiao D. Global analysis in a predator-prey system with nonmonotonic functional response, SIAM JAM. 2001;

:1445-1472.

Wolkowicz GSW. Bifurcation analysis of a predator-prey system involving group defense. SIAM JAM. 1988; 48592-606.

Vilches K, González-Olivares E, Rojas-Palma A. Prey herd behavior modeled by a generic non-differentiable functional response, MMNP. 2018; 13-26.

Sih A. Prey refuges and predator-prey stability. Theor. Popul. Biol. 1987; 31:1-12.

Ramos-Jiliberto R and Gonzalez-Olivares E. Population-level consequences of antipredator behavior. A metaphysiological model based on the functional ecology of the leaf-eared mouse, Theoretical Population Biology. 2002; 62:63-80.

Ramos-Jiliberto R and Gonzalez-Olivares E. Relating behavior to population dynamics: a predator-prey metaphysiological model emphasizing zooplankton diel vertical migration as an inducible response. Ecological Modelling. 2000; 127: 221-233.

Liu Y, Tian Y, Sun K. Dynamic properties and fishing behavior analysis of a predator-prey model with carrying-over fear and Allee effects. Chaos, Solitons and Fractals. 2025; 201: 11721, 20 pag.

González-Olivares E, Huincahue-Arcos J. A two-patch model for the optimal management of a fishing resource considering a marine protected area. Nonlinear Analysis: Real World and Applications. 2011; 12:2489-2499.

Mandal G. Rojas-Palma A, Gonzalez-Olivares E, Chakravarty S, Narayan Guin L. Allee-induced periodicity and bifurcations in a Gause-type model with interference phenomena, European Physic Journal B. 2025; 98:63-96.

Thirthar AA, Kumar B, &Verma SK. Effects of predator cooperation in hunting and prey fear in a generalist predator-prey model that includes global warming phenomena. The European Physical Journal. 2024; Plus 139, article number 1099.

Collings JB. Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol. 1995; 57:63-76.

Clark CW. Mathematical Bioeconomics: The Optimal management of renewable resources. 2nd Edition. New York: Wiley; 1990.

González-Olivares E, López-Cruz R, Rojas-Palma A. Uso de refugio por las presas: su impacto en la dinámica del modelo de Lotka-Volterra. (Prey refuge use: its impact on the dynamics of the Lotka-Volterra model). Selecciones Matemáticas. 2022; 9(2):287-301.

Scudo FM and Ziegler JR. The Golden Age of Theoretical Ecology: 1923- 1940, Lecture Notes in Biomathematics, Vol. 22, New York: Springer; 1978.

Scudo FM. The ”Golden Age” of Theoretical Ecology; A conceptual appraisal, Revue europeenne des sciences sociales. Berlin: 1984; 22(67):11-64.

Wyse SK, Martignoni MM, Mata MA, Foxall E, Tyson RC. Structural sensitivity in the functional responses of predator-prey models. Ecological Complexity. 2022; 51: 101014.

González-Olivares E, González-Yáñez B, Becerra-Klix R, Ramos-Jiliberto R. Multiple stable states in a model based on predator-induced defenses, Ecological Complexity. 2017; 32:111-120.

Ginoux J-M. The paradox of Vito Volterra’s predator-prey model, Lettera Matematica. 2017; 5:305-311.

Diz-Pita E, Otero-Espinar MV. Predator-prey models: A review of some recent advances. Mathematics. 2021; 91783.

Diz-Pita E, Otero-Espinar MV. Predator-prey models: a review on some recent adaptations. arXiv:2501.16860. 2025

Alebraheem J. Dynamics of Predator-Prey Models with Negative Direct Effects of Climate Change, Contemporary Mathematics. 2025; 6(3):2785-2815.

Dai C, Wang Q, Liu Z, Yan Q. Trade-off dynamics of predator-prey system incorporating variable carrying capacity and wind effect. Chaos, Solitons and Fractals. 2025; 199: 116594. 18 pag.

Smith FE. Population dynamics in Daphnia magna. Ecology. 1963; 44:651-663.

Edelstein-Keshet L. Mathematical Models in Biology. Philadelfia: SIAM. 2005.

Rivera-Estay V, Rojas-Palma A, González-Olivares E. A predation model considering a generalist predator and the Rosenzweig functional response. Mathematical Modelling and Analysis. 2025; 30(4):604-625.

Jost C. Comparing predator-prey models qualitatively and quantitatively with ecological time-series data[Thesis]. Institut national agronomique Paris-Grignon; 1998; 201 pag.

Published

2025-12-27

How to Cite

González-Olivares, E., Rojas-Palma, A., Alberto, . M. E., & Reyes-Bahamon, F. J. (2025). Centenary of the first predator-prey model. Revision, modifications and challenges of this fundamental ecological interrelationship. Selecciones Matemáticas, 12(02), 475 - 490. https://doi.org/10.17268/sel.mat.2025.02.16

Most read articles by the same author(s)

1 2 > >>