Numerical simulation for shell deformation using the Naghdi and Koiter models

Authors

  • José Luis Ponte Bejarano Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Juan Carlos Ponte Bejarano Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Alexis Rodriguez Carranza Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.11

Keywords:

Shell, Naghdi and Koiter models, numerical simulation for shells, finite element method

Abstract

In this research work, shell deformations generated by surface forces acting on the shell are described and simulated. The Naghdi and Koiter models are used to describe shell deformations. A weak formulation for the model is obtained, and some results on the existence of solutions are presented. The finite element method is then used to obtain the deformations. In addition, simulations of shell deformations are shown for the case of sectional curvature k = 0.

References

Ciarlet PG. Mathematical Elasticity, Volume III: Theory of Shells. Siam; 2000. p. 3-328. Available from: https://epubs. siam.org/doi/10.1137/1.9781611976823.fm [cited 2025-04-13].

Yao P. Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach. Hall-CRC Aplied Mathematics an Nonlinear Science; 2011. p. 249-286. Available from: https://doi.org/10.1201/b11042 [cited 2025-03-01].

Shen X, Li H. The time-dependent Koiter model and its numerical computation. Applied Mathematical Modelling. 2017; 55:131-144. Available from: https://doi.org/10.1016/j.apm.2017.07.016.

Naghdi P. Theory of shells and Plates. In: Truesdell, C. (eds) Linear Theories of Elasticity and Thermoelasticity. Springer, Berlin, Heidelberg; 1973. p. 425-640. Available from: https://link.springer.com/chapter/10.1007/978-3-662-39776-3_5 [cited 2025-04-13].

Yao P. Observability inequalities for shells. Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187). 2000; 3: 2896-2901. Available from: https://doi.org/10.1109/CDC.2000.914251.

Yao P. Boundary controllability for the quasilinear wave equation. Applied Mathematics and Optimization. 2010; 61: 191-233. Available from: https://doi.org/10.1007/s00245-009-9088-7.

Yang P, Yao P. Exact controllability of a structural acoustic system with variable coefficient and curved wall. 36th Chinese Control Conference (CCC). 2017; 8027585: 1638-1643. Available from: https://doi.org/10.23919/ChiCC. 2017.8027585.

Ciarlet PG, Mardare C. A nonlinear shell model of Koiter’s type. Comptes Rendus Mathematique. 2018; 356(2): 227-234. Available from: https://doi.org/10.1016/j.crma.2017.12.005.

Tambaca J, Tutek Z. A new linear Naghdi type shell model for shells with little regularity. Applied Mathematical Modelling. 2016; 40(23-22): 10549-10562. Available from: https://doi.org/10.1016/j.apm.2016.07.007.

Rodriguez A, Martinez V, Ponte JL, Ponte JC. Exponencial stability of the energy in Naghdi shell model with localized internal dissipation and internal exact controllability. Journal of Mathematical Analysis and Applications. 2024; 537(1):128314. Available from: https://doi.org/10.1016/j.jmaa.2024.128314.

Ciarlet PG. The Finite Element Method for Elliptic Problems. Siam; 1978. p. 333-376. Available from: https://epubs. siam.org/doi/book/10.1137/1.9780898719208 [cited 2025-06-20].

Bernadou M, Ciarlet PG, Miara B. Existence theorems for two-dimensional linear shell theories. Journal of Elasticity. 1994; 34: 111–138. Available from: https://doi.org/10.1007/BF00041188.

Published

2025-12-27

How to Cite

Ponte Bejarano, J. L., Ponte Bejarano, J. C., & Rodriguez Carranza, A. (2025). Numerical simulation for shell deformation using the Naghdi and Koiter models. Selecciones Matemáticas, 12(02), 396 - 412. https://doi.org/10.17268/sel.mat.2025.02.11