Numerical simulation of energy cascade in turbulent fluids

Authors

  • Alexis Rodriguez Carranza Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Elder J. Varas Pérez Facultad de Ciencias físicas y matemáticas, Universidad Nacional de Trujillo, Juan San Pablo s/n, Trujillo-Perú.
  • Juan C. Ponte Bejarano Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2022.02.07

Keywords:

Navier Stokes Equations, energy transfer, shell models

Abstract

Transfer of energy from large to small scales in turbulent flows is described as a flux of energy from small wave numbers to large wave numbers in the spectral representation of the Navier-Stokes equation. The problem of resolving the relevant scales in the flow corresponds in the spectral representation to determining the spectral truncation at large wave numbers. The effective number of degrees of freedom in the flow depends on the Reynolds number and a numerical simulation of the Navier Stokes equation for high Reynolds numbers is impractical without some sort of reduction of the number of degrees of freedom. The shell models are constructed to obey the same conservation laws and symmetries as the Navier Stokes equation as an alternative. In this work we present the Sabra shell model for the study of the energy cascade of turbulence and we will show numerically that the energy dissipation is approximately -1/3 which is in agreement with the theory K41.

References

Ditlevsen PD. Turbulence and Shell Models, Cambridge University Press 2011.

L’vov VS, Podivilov E, Pomyalov A, Procaccia I, Vandembroueq D. Improved shell model of turbulence. Phys. Rev. E. 1998; 58(2):1811–22.

Lorenz EN. Low order models representing realizations of turbulence. J. Fluid Mech. 1972; 55:545–63.

Gledzer EB. System of hydrodynamic type admitting two quadratic integrals of motion

Dokl. Akad. Nauk SSSR. 1973; 209(5):1046–1048.

Yamada M, Ohkitani K. Lyapunov Spectrum of a Chaotic Model of Three-Dimensional Turbulence. J. Phys. Soc. Jpn. 1987: 56:4210-4213.

Jensen MH, Paladin G, Vulpiani A. Intermittency in a cascade model for three-dimensional turbulence Phys. Rev. A. 1991; 43:798.

Pissarenko D, Biferale L, Courvoisier D, Frisch U, Vergassola M. Further results on multifractality in shell models. Phys. Fluids A. Fluid Dynamics; 1993; 5:2533.

Benzi R, Biferale L, Parisi G. On intermittency in a cascade model for turbulence. Physica D. 1993; 65:163-171.

Obukhov AM. On some general characteristics of the equations of the dynamics of

the atmosphere. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana. 1971; 7:695–704.

Ditlevsen PD. Symmetries, invariants, and cascades in a shell model of turbulence. Phys. Rev. E. 2000; 62:484-9.

Kolmogoroff AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR. 1941; 30:301–305.

Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press. 1967.

Published

2022-12-30

How to Cite

Rodriguez Carranza, A., Varas Pérez, E. J., & Ponte Bejarano, J. C. (2022). Numerical simulation of energy cascade in turbulent fluids. Selecciones Matemáticas, 9(02), 302 - 311. https://doi.org/10.17268/sel.mat.2022.02.07