Analysis of the behavior of the flow of prices in the financial market using the entropy of information
DOI:
https://doi.org/10.17268/sel.mat.2023.01.15Keywords:
Information entropy, time series of prices, financial marketAbstract
In the present work it is indicated that the entropy of the information is the most appropriate tool to analyze the behavior of the flow of prices in the financial market. For this, the following points are mentioned: general concepts of chaos theory applied to the financial market, concept of dynamic systems applied to the flow of prices, time series of prices and the entropy of information applied to the flow of prices in the financial market.
References
Alves P. Quantifying chaos in stock markets before and during COVID-19 pandemic from the phase space reconstruction. Mathematics and Computers in Simulation. 2022; 202: 480-499. Available from: URL https://doi.org/10.1016/j.matcom.2022.07.026.
Chen J. Information, entropy and evolutionary finance. School of Business. University of Northern British Columnia. 2003; 1-27. Available from: URL http://dx.doi.org/10.2139/ssrn.350683
Chen J. Information Theory and Market Behavior. School of Business. University of Northem British Columnia. 2006; 1-25. Available from: URL http://dx.doi.org/10.2139/ssrn.622901
Calcagnile L, Corsi F, Marmi S. Entropy and Efficency of the ETF Market. Computational Economics. 2020; 55(1): 143-184. Available from: URL https://doi.org/10.1007/s10614-019-09885-z
Devi S. Financial portfolios based on Tsallis relative entropy as the risk measure.
Journal of Statistical Mechanics: Theory and Experiment. 2021; 9: 093207. Available from: URL https://doi.org/10.1088/1742-5468/ab3bc5
Fraser A., Swinney H. Independent coordinates for strange attractors from mutual information. Physical Review A (General Physics). 1986; 33(2): 1134-1140.
Freiberg U, Kohl S. Box dimension of fractal attractors and their numerical computation. Communications in Nonlinear Science and Numerical Simulation. 2021; 95: 105615. Available from: URL https://doi.org/10.1016/j.cnsns.2020.105615
Gutierrez A, Rodriguez A, Carrasco A. Detecting nonlinear dynamics using BDS test and surrogate data in financial time series. Journal of Mathematics and System Science. 2019; 9(2). Available from: URL https://doi.org/10.17265/2159-5291/2019.02.002
Henon M. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics. 1976; 50(1): 69-77. Available from: URL https://doi.org/10.1007/BF01608556
Immonen E. Simple agent-based dynamical system models for efficient financial markets: Theory and examples. Journal of Mathematical Economics. 2017; 69: 38-53. Available from: URL https://doi.org/10.1016/j.jmateco.2016.12.005
Kennel M., Brown R., Abarbanel H. Determining embedding dimensions for phase-space reconstruction using a geometrical construction. The American Physical Society, Phys. Rev. 1992; 45: 34033411.
Krakovská A, Pócoš S, Mojžišová K, Bečková I, Xaver J. State space reconstruction techniques and the accuracy of prediction. Communications in Nonlinear Science and Numerical Simulation. 2022; 111: 106422. Available from: URL https://doi.org/10.1016/j.cnsns.2022.106422
Lin X, Wang Y, Wang J, Zeng W. Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: A financial model with nonconstant demand elasticity. Chaos, Solitons & Fractals. 2022; 160: 112269. Available from: URL https://doi.org/10.1016/j.chaos.2022.112269
Lorenz E. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963; 20(2): 130-141. Available from: URL https://doi.org/10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2
Rodriguez A, Ponte J. Measuring the complexity in the Peruvian financial market. Selecciones Matemáticas. 2015; 2(02): 119-128. Available from: URL https://doi.org/10.17268/sel.mat.2015.02.06
Rodriguez A, Cabral M, Ponte J. Dinámica não linear e caos no mercado financeiro: Pesquisando indicios de caos. Novas Edicoes Academicas; 2015; 25-110 p.
Salim L. A study on chaos in crude oil markets before and after 2008 international financial crisis. Physica A: Statistical Mechanics and its Applications. 2017; 466: 389-395. Available from: URL https://doi.org/10.1016/j.physa.2016.09.031
Sauer T, Yorke A, Casdagli M. Embedology. Journal of Statistical Physics. 1991; 65: 579-616. Available from: URL https://doi.org/10.1007/bf01053745
Shannon C. A mathematical theory of communication. Bell System Technical Journal. 1948; 27: 379-423; 623-656.
Shternshis A, Mazzarisi P, Marmi S. Measuring market efficiency: The Shannon entropy of high-frequency financial time series. Chaos, Solitons & Fractals. 2022; 162: 112403. Available from: URL https://doi.org/10.1016/j.chaos.2022.112403
Vogl M, Rötzel P. Chaoticity versus stochasticity in financial markets: Are daily S & P 500 return dynamics chaotic?. Communications in Nonlinear Science and Numerical Simulation. 2022; 108: 106218. Available from: URL https://doi.org/10.1016/j.cnsns.2021.106218
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Selecciones Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.