Análisis del comportamiento del flujo de precios en el mercado financiero usando la entropía de la información

Autores

  • José Luis Ponte Bejarano Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú. https://orcid.org/0000-0002-4997-7950
  • Juan Carlos Ponte Bejarano Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Alexis Rodriguez Carranza Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2023.01.15

Palavras-chave:

Entropía de la información, serie temporal de precios, mercado financiero

Resumo

En el presente trabajo se indica que la entropía de la información es la herramienta más adecuada para analizar el comportamiento del flujo de precios en el mercado financiero. Para esto se mencionan los siguientes puntos: conceptos generales de la teoría del caos aplicada al mercado financiero, concepto de sistemas dinámicos aplicada al flujo de precios, series temporales de precios y la entropía de la información aplicada al flujo de precios en el mercado financiero.

Referências

Alves P. Quantifying chaos in stock markets before and during COVID-19 pandemic from the phase space reconstruction. Mathematics and Computers in Simulation. 2022; 202: 480-499. Available from: URL https://doi.org/10.1016/j.matcom.2022.07.026.

Chen J. Information, entropy and evolutionary finance. School of Business. University of Northern British Columnia. 2003; 1-27. Available from: URL http://dx.doi.org/10.2139/ssrn.350683

Chen J. Information Theory and Market Behavior. School of Business. University of Northem British Columnia. 2006; 1-25. Available from: URL http://dx.doi.org/10.2139/ssrn.622901

Calcagnile L, Corsi F, Marmi S. Entropy and Efficency of the ETF Market. Computational Economics. 2020; 55(1): 143-184. Available from: URL https://doi.org/10.1007/s10614-019-09885-z

Devi S. Financial portfolios based on Tsallis relative entropy as the risk measure.

Journal of Statistical Mechanics: Theory and Experiment. 2021; 9: 093207. Available from: URL https://doi.org/10.1088/1742-5468/ab3bc5

Fraser A., Swinney H. Independent coordinates for strange attractors from mutual information. Physical Review A (General Physics). 1986; 33(2): 1134-1140.

Freiberg U, Kohl S. Box dimension of fractal attractors and their numerical computation. Communications in Nonlinear Science and Numerical Simulation. 2021; 95: 105615. Available from: URL https://doi.org/10.1016/j.cnsns.2020.105615

Gutierrez A, Rodriguez A, Carrasco A. Detecting nonlinear dynamics using BDS test and surrogate data in financial time series. Journal of Mathematics and System Science. 2019; 9(2). Available from: URL https://doi.org/10.17265/2159-5291/2019.02.002

Henon M. A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics. 1976; 50(1): 69-77. Available from: URL https://doi.org/10.1007/BF01608556

Immonen E. Simple agent-based dynamical system models for efficient financial markets: Theory and examples. Journal of Mathematical Economics. 2017; 69: 38-53. Available from: URL https://doi.org/10.1016/j.jmateco.2016.12.005

Kennel M., Brown R., Abarbanel H. Determining embedding dimensions for phase-space reconstruction using a geometrical construction. The American Physical Society, Phys. Rev. 1992; 45: 34033411.

Krakovská A, Pócoš S, Mojžišová K, Bečková I, Xaver J. State space reconstruction techniques and the accuracy of prediction. Communications in Nonlinear Science and Numerical Simulation. 2022; 111: 106422. Available from: URL https://doi.org/10.1016/j.cnsns.2022.106422

Lin X, Wang Y, Wang J, Zeng W. Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: A financial model with nonconstant demand elasticity. Chaos, Solitons & Fractals. 2022; 160: 112269. Available from: URL https://doi.org/10.1016/j.chaos.2022.112269

Lorenz E. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963; 20(2): 130-141. Available from: URL https://doi.org/10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2

Rodriguez A, Ponte J. Measuring the complexity in the Peruvian financial market. Selecciones Matemáticas. 2015; 2(02): 119-128. Available from: URL https://doi.org/10.17268/sel.mat.2015.02.06

Rodriguez A, Cabral M, Ponte J. Dinámica não linear e caos no mercado financeiro: Pesquisando indicios de caos. Novas Edicoes Academicas; 2015; 25-110 p.

Salim L. A study on chaos in crude oil markets before and after 2008 international financial crisis. Physica A: Statistical Mechanics and its Applications. 2017; 466: 389-395. Available from: URL https://doi.org/10.1016/j.physa.2016.09.031

Sauer T, Yorke A, Casdagli M. Embedology. Journal of Statistical Physics. 1991; 65: 579-616. Available from: URL https://doi.org/10.1007/bf01053745

Shannon C. A mathematical theory of communication. Bell System Technical Journal. 1948; 27: 379-423; 623-656.

Shternshis A, Mazzarisi P, Marmi S. Measuring market efficiency: The Shannon entropy of high-frequency financial time series. Chaos, Solitons & Fractals. 2022; 162: 112403. Available from: URL https://doi.org/10.1016/j.chaos.2022.112403

Vogl M, Rötzel P. Chaoticity versus stochasticity in financial markets: Are daily S & P 500 return dynamics chaotic?. Communications in Nonlinear Science and Numerical Simulation. 2022; 108: 106218. Available from: URL https://doi.org/10.1016/j.cnsns.2021.106218

Publicado

2023-07-26

Como Citar

Ponte Bejarano, J. L., Ponte Bejarano, J. C. ., & Rodriguez Carranza, A. (2023). Análisis del comportamiento del flujo de precios en el mercado financiero usando la entropía de la información. Selecciones Matemáticas, 10(01), 164 - 172. https://doi.org/10.17268/sel.mat.2023.01.15

Edição

Seção

Articles