Refuge use by prey dependent on the number of predators in a Gause-type model

Authors

  • Virginia Belén Gallar Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo , Mendoza Argentina
  • Alejandro Rojas-Palma Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
  • Marcelo Eduardo Alberto Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza Argentina
  • Eduardo González-Olivares Pontificia Universidad Católica de Valparaíso, Chile.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.06

Keywords:

Predator-prey model, refuge, stability, bifurcations, limit cycles, separatrix curves

Abstract

This paper deals with a continuous-time predator-prey model of Gause-type considering the use of a physical refuge by a fraction of the prey population. The fraction of hidden prey is assumed to be dependent on the presence of predators in the environment. The conditions for the existence of equilibrium points and their local stability are established. According to these results, the extinction of both species is not possible, and they coexist over the long term. We conclude that the dynamics of the studied model are very similar to the model that does not consider prey refuge. However, this cannot be stated if another function is used to describe this anti-predator behavior.

References

Berryman A, Gutierrez A, Arditi R. Credible, Parsimonious and Useful Predator-Prey Models: A Reply to Abrams, Gleeson, and Sarnelle. Ecology. 1995. 76(6):1980–1985.

Turchin P. Complex population dynamics: A theoretical/empirical synthesis. Princeton University Press; 2003.

Dumortier F, Llibre J, Artes JC. Qualitative Theory of Planar Differential Systems. Springer; 2006.

Bazykin AD. Nonlinear dynamics of interacting populations. World Scientific; 1998.

Freedman HI. Deterministic mathematical model in Population Ecology, Marcel Dekker; 1980.

Gause GF. The struggle for existence. Williams & Wilkins. Dover; 1934.

Tintinago-Ruiz P, Rojas-Palma A, González-Olivares E. Refuge used by prey as a function of predator numbers in a Leslie-type model. Refugio usado por las presas dependiente de la cantidad de depredadores en un modelo de tipo Leslie. Selecciones Matemáticas. 2024; 11(02):249-258.

Leslie PH. Some further notes on the use of matrices in population mathematics, Biometrica. 1948; 35:213-245.

Leslie PH, Gower JC. The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika. 1960; 47:219-234.

Bacaer N. A short history of mathematical population dynamics. Springer. 2011.

May RM. Stability and complexity in model ecosystems, 2nd Edition. Princeton University Press; 2001.

Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della R. Accademia dei Lincei S. 1926; VI(2):31-113.

Lotka AJ. Elements of Physical Biology. Williams & Wilkins; 1925.

Malthus, TR. An Essay on the Principle of Population. J. Johnson. England; 1798.

Goh BS. Management and Analysis of Biological Populations. Elsevier Scientific Publishing Company, Amsterdam; 1980.

González-Olivares E, Ramos-Jiliberto R. Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecological Modelling. 2003; 166:135-146.

González-Olivares E, González-Yañez B, Becerra-Klix R, Ramos-Jiliberto R. Multiple stable states in a model based on predator-induced defenses, Ecological Complexity. 2017; 32:111-120.

Taylor RJ. Predation. Chapman and Hall. New York; 1984.

Almanza-Vasquez E, González-Olivares E, González-Yáñez B. Dynamics of Lotka-Volterra model considering satured refuge for prey. In R. Mondaini (Ed.), BIOMAT 2011 International Symposium on Mathematical and Computational Biology (pp. 62-72). World Scientific Co. Pte. Ltd. 2012.

González-Olivares E, Rojas-Palma A, López-Cruz R. Influence of the prey refuge use on the Volterra predation model: Influencia del uso de refugio por las presas en el modelo Volterra. Selecciones Matematicas. 2024; 11(01):56-68.

Maynard Smith J. Models in Ecology. Cambridge University Press. 1974.

Sih A. Prey refuges and predator-prey stability. Theor. Popul. Biol. 1987; 31:1-12.

Verhulst PF. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathematique et Physique. 1838; Vol. X:113-121.

Holling CS. The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. The Canadian Entomologist. 1959; 91(5):293-320.

González-Olivares E, Rojas-Palma A. Estabilidad en sistemas cuadráticos del tipo Kolmogorov describiendo interacciones entre dos especies. Una breve revisión. Selecciones Matemáticas. 2021; 8(1):131-146.

Poincaré H. Sur l’intégration algébrique des equations différentielles du premier ordre et du premier degré I. Rendiconti del circolo matematico di Palermo. 1891; 5:161-191.

Perko L. Differential equations and dynamical systems, 3rd ed. (Vol. 7). Springer Science & Business Media; 2013.

Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (2nd edition) CRC press. 2018.

Birkhoff G, Rota GC. Ordinary Differential Equations, 4th ed. John Wiley & Sons; 1989.

Kuznetsov YA. Elements of applied bifurcation theory, 4th ed. (Vol. 112). Springer; 2023.

Published

2025-12-27

How to Cite

Gallar, V. B., Rojas-Palma, A., Eduardo Alberto, M., & González-Olivares, E. (2025). Refuge use by prey dependent on the number of predators in a Gause-type model. Selecciones Matemáticas, 12(02), 344 - 355. https://doi.org/10.17268/sel.mat.2025.02.06

Most read articles by the same author(s)

1 2 > >>