Well-Possednes of a predator-prey reaction-diffusion model with functional response dependent on species

Authors

  • Neisser Pino-Romero Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2024.01.07

Keywords:

Lotka-Volterra model, Well-Possedness of the Problem, Reaction-Diffusion equation, Semigroup Theory

Abstract

In this work, the well-possednes of a predator-prey model with reaction-diffusion will be studied where the Allee effect in prey reproduction will be included and predation dynamics will be considered a functional response dependent on the species (prey and predator) with the incorporation of the refuge in the dam. In this way, the existence, uniqueness and positivity of the system's solutions as the main result will be guaranteed.

Author Biography

Neisser Pino-Romero, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú.

 

 

References

Apreutesei N, Dimitriu G, et al. On a prey–predator reaction–diffusion system with Holling type III functional response. Journal of Computational and Applied Mathematics. 2010;235(2):366-79.

Akjouj I, Barbier M, et al. Complex systems in Ecology: A guided tour with large Lotka-Volterra models and random matrices. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2022:1-35.

Lazaar O, Serhani M, et al. On the Stability Analysis of a Reaction-Diffusion Predator-Prey Model Incorporating Prey Refuge. Int J Appl Comput. 2022;8(207-230):1895-909.

Murray JD. In: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics. Springer; 2013. p. 551 pages.

Camara BI. Complexité de dynamiques de mod`eles proie-prédateur avec diffusion et applications. Université du Havre; 2009.

Romero NP, Fernández CUS. Modelo matemático de una cadena alimenticia depredador-presa: plancton-anchoveta. Revista de Matemática: Teoría Y Aplicaciones. 2021;29(1):71-104.

González-Olivares E, Tintinago-Ruiz PC, Rojas-Palma A. A Leslie–Gower-type predator–prey model with sigmoid functional response. International Journal of Computer Mathematics. 2015;92(2):1895-909.

Murray JD. In: Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics. Springer; 2013. p. 814 pages.

Pazy A. In: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer; 1983. p. 282 pages.

Chakraborty B, Bairagi N. Complexity in a prey-predator model with prey refuge and diffusion. Ecol Complex Journal. 2019;37:11-23.

Published

2024-07-29

How to Cite

Pino-Romero, N. (2024). Well-Possednes of a predator-prey reaction-diffusion model with functional response dependent on species . Selecciones Matemáticas, 11(01), 88 - 103. https://doi.org/10.17268/sel.mat.2024.01.07