A brief tour through the Wavelets

Authors

  • Alejandro Ortiz Fernández Sección Matemática, Pontificia Universidad Católica del Perú

DOI:

https://doi.org/10.17268/sel.mat.2022.02.14

Keywords:

Wavelets, Fourier, Haar, AMR, orthonormal basis, transform

Abstract

The objetive of these notes is to give a brief overview of wavelet theory, both of the fundamental mathematical arguments and of the ideas it contains. In addition, the theory is suitable for multidisciplinary work.

References

Chui CK. An Introduction to Wavelets. San Diego: Ac.d. Press; 1992.

Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM; 1992.

Debnat L, Shah FA. Wavelet Transforms and Their Applications. 2d editon. Boston: Birkhäuser; 2015.

Frazier M. An Introduction to Wavelets Through Linear Algebra. New York: Springer; 1999.

Hernández E, Weiss G. A First Course on Wavelets. Boca Raton: CRC. Press; 1996.

Mallat S. Multiresolution Approximations and Wavelet Orthonormal Base of L^2(R). Trans.Am.Math.Soc. 315. 1989.

Mallat S. A Wavelet Tours of Signal Processing. Second Edit. USA: Academic Press; 2000.

Meyer Y. Wavelets and Operators. Cambridge University Press. Vol.1; 1992.

Ortiz A. Ondículas (``Wavelets''), un Paseo Histórico-Analítico. Lima: Sec. Matem. PUCP. Vols.1, 2; 2012.

Ortiz A. Ondículas, Evolución de Algunas Ideas y Aplicaciones. Selecciones Matemáticas. 2019; Vol.06(01): 119-127.

Strang G, Nguyen T. Wavelets and Filter Banks. Wallesley - Cambridge Press; 1996.

Jaffard S, Meyer Y, Ryan RD. Wavelets: Tools for Science-Technology. Philadelphia: SIAM; 2001.

Published

2022-12-30

How to Cite

Ortiz Fernández, A. . (2022). A brief tour through the Wavelets. Selecciones Matemáticas, 9(02), 395 - 422. https://doi.org/10.17268/sel.mat.2022.02.14