Periodicity in a Gause-type predation model considering collaboration among predators

Authors

  • Eduardo González Olivares Pontificia Universidad Católica de Valparaíso http://orcid.org/0000-0003-3907-0076
  • Alejandro Rojas-Palma Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.

DOI:

https://doi.org/10.17268/sel.mat.2021.02.05

Keywords:

Predator-prey model, functional response, cooperation, stability, bifurcations, limit cycles

Abstract

Predation models are a great source of study from both an ecological and a mathematical point of view, especially for the analysis of trophic chains.

The determination of the dynamics of the systems that describe them, as well as the verification of the nature of these properties by the interacting species, is a topic that is sometimes not always correlated.

It is widely known that the incorporation of some mathematical descriptions of ecological phenomena

strongly modifies the properties of many of these models. This implies that the systems describing such

models are structurally unstable.

In this work, we include collaboration or cooperation between predators, a social behavior that describes the help made to capture their favorite prey. It is described by a power function with an exponent between 0 and 1, to indicate the possible interference between them, despite their collaboration. The exponent is interpreted as the density-dependent aggregation index.

We show that this assumption originates a varied behavior of the system, with respect to the associated

Kolmogorov-type quadratic polynomial system that does not consider collaboration, including the existence of a stable limit cycle around a positive equilibrium point, among other analytical properties.

Author Biography

Eduardo González Olivares, Pontificia Universidad Católica de Valparaíso

Profesor titular Jubilado

References

Antonelli PL, Kazarinoff ND. Starfish predation of a growing coral reef community. J. Theor. Biol. 1984;107:667-684.

Antonelli PL, Kazarinoff ND. Modelling density-dependent aggregation and reproduction in certain terrestrial and marine ecosystems: A comparative study, Ecological Modelling 1988;41:219-227.

Antonelli PL, Lin X. Bifurcation analysis on a coral-starfish model. Mathematical and Computer Modelling 13 (1990) 35-44.

Bazykin AD. Nonlinear Dynamics of interacting populations, World Scientific Publishing Co. Pte. Ltd., Singapore 1998.

Berryman AA, Gutierrez AP, Arditi R. Credible, parsimonious and useful predator-prey models - A reply to Abrams, Gleeson and Sarnelle, Ecology. 1995 76:1980-1985.

Chicone C. Ordinary differential equations with applications (2nd edition), Texts in Applied Mathematics 34, Springer 2006.

Courchamp F, Berec L, Gascoigne J. Allee effects in Ecology and Conservation, Oxford University Press 2007.

Freedman HI. Deterministic Mathematical Model in Population Ecology, Marcel Dekker 1980.

Gause GF. The struggle for existence, Dover 1934.

Goh B-S. Management and Analysis of Biological Populations, Elsevier Scientific Publishing Company, 1980.

González-Olivares E, González-Yañez B, Becerra-Klix R. Prey refuge use as a function of predator-prey encounters, Private communication, submitted to International Journal of Biomathematics (2012).

González-Olivares E, Cabrera-Villegas J, Córdova-Lepe F, Rojas-Palma A. Competition among predators and Allee effect on prey: their influence on a Gause-type predation model, Mathematical Problems in Engineering, vol. 2019, Article ID 3967408, 19 pages, 2019.

González-Olivares E, Valenzuela-Figueroa S, Rojas-Palma A. A simple Gause type predator-prey model considering social predation, Mathematical Methods in the Applied Sciences 42 (2019) 5668-5686.

González-Olivares E, Rojas-Palma A. lnfluencia del efecto Allee fuerte en las presas y de la competición entre los depredadores en modelos de depredación del tipo Leslie-Gower, Selecciones Matemáticas; 2020; 7(2):302-313.

González-Olivares E, Rojas-Palma A. Estabilidad en sistemas cuadráticos del tipo Kolmogorov describiendo interacciones entre dos especies. Una breve revisión, Selecciones Matemáticas. 2021; 8(1):132-146.

Hilker FM, Paliaga M, Venturino E. Diseased social predators, Bulletin of Mathematical Biology 2017;79:2175-2196.

Jang SR-J, Zhang W, Larriva V. Cooperative hunting in a predator-prey system with Allee effects in the prey, Natural Resource Modelling 31 (2018) 1-20 pp.

Kot M. Elements of Mathematical Ecology, Cambridge University Press, Cambridge, New York, 2003.

MacNulty DR, Tallian A, Stahler DR, Smith DW. Influence of group size on the success of wolves hunting bison, Plos One 2014;9(11):e112884 1-8.

May RM. Stability and complexity in model ecosystems (2nd edition), Princeton University Press, 2001.

Maynard-Smith J. Models in Ecology, University Press 1974.

Rojas-Palma A, Gonzalez-Olivares E. Gause type predator-prey models with a generalized rational non-monotonic functional response, In J. Vigo-Aguiar (Ed.) Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, Volume 4 (2014) 1092-1103. ISBN: 978-84-616-9216-3.

Taylor RJ. Predation, Chapman and Hall, 1984.

Teixeira Alves M, Hilker FM. Hunting cooperation and Allee effects in predators, J. of Theoretical Biology 419 (2017) 13-22.

Turchin P. Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton University Press, Princeton, New Jersey, 2003.

Ye P, Wu D. Impacts of strong Allee effect and hunting cooperation for a Leslie-Gower predator-prey system, Chinese J. of Physics 68 (2020) 49-64.

Published

2021-12-27

How to Cite

González Olivares, E., & Rojas-Palma, A. (2021). Periodicity in a Gause-type predation model considering collaboration among predators. Selecciones Matemáticas, 8(02), 267-273. https://doi.org/10.17268/sel.mat.2021.02.05