Laplace invariants in hypersurfaces parametrized by lines of curvature

Authors

  • Carlos Carrión Riveros
  • Armando Vásquez Corro

DOI:

https://doi.org/10.17268/sel.mat.2017.01.04

Keywords:

Laplace invariants, Dupin hypersurfaces, lines of curvature

Abstract

In this work, using the Laplace invariants theory we give other proof for the following result: A proper Dupin hypersurfaces Mn for n ≥ 4 in Rn+1 with n distinct principal curvatures and
constant mobius curvature, cannot be parametrized by lines of curvature. Also, we study special classes of hypersurfaces Mn; n ≥ 3; in Rn+1, parametrized by lines of curvature with n distinct principal curvatures and we obtain a geometric relation when the Laplace invariants are vanish, we show that the foliations of Mn are umbilical hypersurfaces if and only if mijk = 0. Moreover, the foliations of Mn are Dupin hypersurfaces if and only if mij = 0.

References

T. E. Cecil and P. J. Ryan. Conformal geometry and the cyclides of Dupin, Can. J. Math. 32 (1980), pp. 767-782.

T. E. Cecil and G. Jensen. Dupin hypersurfaces with three principal curvatures, Invent. Math. 132 (1998), pp. 121-178.

T. E. Cecil and G. Jensen. Dupin hypersurfaces with four principal curvatures, Geom. Dedicata, 79 (2000), pp. 1-49.

N. Kamran and K. Tenenblat. Laplace transformation in higher dimensions, Duke Math. Journal 84 (1996),

pp. 237-266.

N. Kamran and K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation, Discrete and continuous dynamical systems, (1998), pp. 359-378.

R. Miyaoka. Compact Dupin hypersurfaces with three principal curvatures, Math. Z. 187 (1984), pp. 433-452.

R. Miyaoka. Dupin hypersurfaces and a Lie invariant, Kodai Math. J. 12 (1989), pp. 228-256.

R. Niebergall. Dupin hypersurfaces in R5, Geom. Dedicata 40 (1991), pp. 1-22, and 41 (1992), pp. 5-38.

U. Pinkall. Dupinsche Hyperachen in E4, Manuscripta Math. 51 (1985), pp. 89-119.

U. Pinkall. Dupin hypersurfaces, Math. Ann. 270 (1985), pp.427-440.

U. Pinkall and G. Thorbergsson. Deformations of Dupin hypersurfaces, Proc. Amer. Math. Soc. 107 (1989), pp.1037-1043.

C. M. C. Riveros and A. M. V. Corro. Classes of Hypersurfaces with vanishing laplace invariants, Bull. Korean Math. Soc. 49 (2012), no 4, pp. 685-692.

C. M. C. Riveros and K. Tenenblat. On four dimensional Dupin hypersurfaces in Euclidean space, An.Acad. Bras. Cien. 75(1) (2003), pp. 1-7.

C. M. C. Riveros and K. Tenenblat. Dupin hypersurfaces in R5, Canadian Journal of Mathematics, 57(6) (2005), pp. 1291-1313.

K. Tenenblat, C. M. C. Riveros and L. A. Rodrigues. On Dupin hypersurfaces with constant Mobius curvature, Pacific J. Math. 236 (2008), no 1, pp. 89-103.

G. Thorbergsson. Dupin hypersurfaces, Bull. London Math. Soc. 15 (1983), pp. 493-498.

Published

2017-07-13

How to Cite

Carrión Riveros, C., & Vásquez Corro, A. (2017). Laplace invariants in hypersurfaces parametrized by lines of curvature. Selecciones Matemáticas, 4(01), 30-37. https://doi.org/10.17268/sel.mat.2017.01.04

Most read articles by the same author(s)