HARMONICS SURFACES OF GRAPHIC TYPE IN R3

Authors

  • Carlos Carrión Riveros
  • Armando Vásquez Corro
  • Sarah O. Barbosa

DOI:

https://doi.org/10.17268/sel.mat.2016.01.01

Keywords:

minimal surfaces, holomorphic functions, helicoide

Abstract

In this research we study harmonic surfaces immersed in R3. We dened Harmonic surfaces of graphic type and showed that a harmonious surface graphic type is minimal if and only if it is part of
a plane or a helix. Also, we give a characterization of harmonic surfaces graphic type parameterized by asymptotic lines and some examples.

References

T. Klotz, Surfaces Harmonically Immersed in E3. Pacific Journal of Mathematics, 21(1): (1967),79-87.

R. Osserman,A Survey of Minimal, Vol. 1. Cambridge University Press, New York, (1989).

C. M. C. Riveros and A. M. V. Corro, Surfaces with constant Chebyshev angle, 35(2) (2012), 359-366.

C. M. C. Riveros and A. M. V. Corro, Surfaces with constant Chebyshev Angle II, Tokyo J. Math., 36(2), (2013), 379-386.

C. M. C. Riveros and A. M. V. Corro, A Characterization of the Catenoid and Helicoid , 24(6) (2013), 1350045 (11 pages).

Published

2016-06-30

How to Cite

Carrión Riveros, C., Vásquez Corro, A., & O. Barbosa, S. (2016). HARMONICS SURFACES OF GRAPHIC TYPE IN R3. Selecciones Matemáticas, 3(01), 1-7. https://doi.org/10.17268/sel.mat.2016.01.01

Most read articles by the same author(s)