ESTABILIDAD ESTRUCTURAL TOPOLOGICA SOBRE ESPACIOS PROYECTADOS

Rodiak Figueroa, German Lozada, José Langa, Eder Aragao

Resumen


En este trabajo estudiamos la estabilidad estructural topologica para una familia de semigrupos no lineales Th(·) sobre espacios de Banach Xh dependiendo de un parametro h.

Palabras clave


Estabilidad; espacios proyectados; espacios de Banach

Texto completo:

PDF HTML

Referencias


Aragao-Costa, E.R.; Caraballo, T.; Carvalho, A.N.; Langa, J.A. Stability of gradient semigroups under perturbations. Nonlinearity, v. 24, n. 7, p. 2099–2117, 2011.

Aragao-Costa, E.R.; Figueroa-López, R.N.; Langa, J.A.; Lozada-Cruz, G. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, accepted 2016.

Arrieta, J.M.; Carvalho, A.N.; Lozada-Cruz, G. J. Dynamics in dumbbell domains I: continuity of the set of equilibria. Journal of Differential Equations, New York, v. 231, n. 2, p. 551–597, 2006.

Arrieta, J. M.; Carvalho, A. N.; Lozada-Cruz, G. J. Dynamics in dumbbell domains II: the limiting problem. Journal of Differential Equations, New York, v. 247, n. 1, p. 174–202, 2009a.

Arrieta, J. M.; Carvalho, A. N.; Lozada-Cruz, G. J. Dynamics in dumbbell domains III: continuity of attractors. Journal of Differential Equations, New York, v. 247, n. 1, p. 225–259, 2009b.

Carvalho, A. N.; Langa, J. A. An extension of the concept of gradient semigroup wich is stable under perturbations.

Journal of Differential Equations, New York, v. 246, n. 7, p. 2646–2668, 2009.

Carvalho, A. N.; Langa, J. A.; Robinson, J. C. Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences 182, Springer, New York, 2013.

Carvalho, A. N., Piskarev, S. A general approximations scheme for attractors of abstract parabolic problems. Numerical Functional Analysis and Optimization, New York, v. 27, n. 7/8, p. 785–829, 2006.

Vainikko, G. Approximative methods for nonlinear equations (two approaches to the convergence problem). Nonlinear Analysis, Theory, Methods and Applications, Oxford, v. 2, n. 6, p. 647–687, 1978.

Vainikko, G. Discretely compact sequences. USSR Computational Mathematics and Mathematical Physics, v. 14, n. 3, p. 32–43, 1974.

Vainikko, G. Funktionalanalysis der diskretisierungsmethoden. Leipzig: BSB B. G. Teubner Verlagsgesellschaft, 1976.

Vainikko, G. Multidimensional weakly singular integral equations. Berlin: Springer-Verlag, 1993.

Vainikko, G. Regular convergence of operators and approximate solution of equations. Itogi Nauki i Tehniki:Seriya Matematicheskii Analiz, Moscow, v. 16, p. 5–53, 1979.




DOI: http://dx.doi.org/10.17268/sel.mat.2016.01.06

Enlaces refback

  • No hay ningún enlace refback.


Short Title: Sel. mat.

---------------------------------------------------------------------------------------------------------

 ISSN:  2411-1783  Versión Electrónica.                      

---------------------------------------------------------------------------------------------------------------

Derechos reservados © 2014 Departamento de Matemáticas.

Para la distribución y cosecha de los Metadatos de nuestros artículos, usar el Protocolo de Interoperabilidad OAI-PMH:    http://revistas.unitru.edu.pe/index.php/SSMM/oai 

                 

                             E-mail: selecmat@unitru.edu.pe

Selecciones Matemáticas es una revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Attribution-NoComercial-ShareAlike 4.0.