ESTABILIDAD ESTRUCTURAL TOPOLOGICA SOBRE ESPACIOS PROYECTADOS

Autores/as

  • Rodiak Figueroa
  • German Lozada
  • José Langa
  • Eder Aragao

DOI:

https://doi.org/10.17268/sel.mat.2016.01.06

Palabras clave:

Estabilidad, espacios proyectados, espacios de Banach

Resumen

En este trabajo estudiamos la estabilidad estructural topologica para una familia de semigrupos no lineales Th(·) sobre espacios de Banach Xh dependiendo de un parametro h.

Citas

Aragao-Costa, E.R.; Caraballo, T.; Carvalho, A.N.; Langa, J.A. Stability of gradient semigroups under perturbations. Nonlinearity, v. 24, n. 7, p. 2099–2117, 2011.

Aragao-Costa, E.R.; Figueroa-López, R.N.; Langa, J.A.; Lozada-Cruz, G. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, accepted 2016.

Arrieta, J.M.; Carvalho, A.N.; Lozada-Cruz, G. J. Dynamics in dumbbell domains I: continuity of the set of equilibria. Journal of Differential Equations, New York, v. 231, n. 2, p. 551–597, 2006.

Arrieta, J. M.; Carvalho, A. N.; Lozada-Cruz, G. J. Dynamics in dumbbell domains II: the limiting problem. Journal of Differential Equations, New York, v. 247, n. 1, p. 174–202, 2009a.

Arrieta, J. M.; Carvalho, A. N.; Lozada-Cruz, G. J. Dynamics in dumbbell domains III: continuity of attractors. Journal of Differential Equations, New York, v. 247, n. 1, p. 225–259, 2009b.

Carvalho, A. N.; Langa, J. A. An extension of the concept of gradient semigroup wich is stable under perturbations.

Journal of Differential Equations, New York, v. 246, n. 7, p. 2646–2668, 2009.

Carvalho, A. N.; Langa, J. A.; Robinson, J. C. Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences 182, Springer, New York, 2013.

Carvalho, A. N., Piskarev, S. A general approximations scheme for attractors of abstract parabolic problems. Numerical Functional Analysis and Optimization, New York, v. 27, n. 7/8, p. 785–829, 2006.

Vainikko, G. Approximative methods for nonlinear equations (two approaches to the convergence problem). Nonlinear Analysis, Theory, Methods and Applications, Oxford, v. 2, n. 6, p. 647–687, 1978.

Vainikko, G. Discretely compact sequences. USSR Computational Mathematics and Mathematical Physics, v. 14, n. 3, p. 32–43, 1974.

Vainikko, G. Funktionalanalysis der diskretisierungsmethoden. Leipzig: BSB B. G. Teubner Verlagsgesellschaft, 1976.

Vainikko, G. Multidimensional weakly singular integral equations. Berlin: Springer-Verlag, 1993.

Vainikko, G. Regular convergence of operators and approximate solution of equations. Itogi Nauki i Tehniki:Seriya Matematicheskii Analiz, Moscow, v. 16, p. 5–53, 1979.

Descargas

Publicado

2016-11-30

Cómo citar

Figueroa, R., Lozada, G., Langa, J., & Aragao, E. (2016). ESTABILIDAD ESTRUCTURAL TOPOLOGICA SOBRE ESPACIOS PROYECTADOS. Selecciones Matemáticas, 3(01), 43-46. https://doi.org/10.17268/sel.mat.2016.01.06

Número

Sección

Articles