Mecanismos y aplicaciones de las rizobacterias en la adquisición del fósforo y biocontrol de nematodos fitopatógenos

Authors

  • Marcos Vera-Morales Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo, Guayaquil, Ecuador. https://orcid.org/0000-0003-2342-6269
  • Giovanna Carpio Universidad Politécnica Salesiana, UPS, Grupo de Investigación en Aplicaciones Biotecnológicas, GIAB, Campus María Auxiliadora, Guayaquil, Ecuador.
  • Enoy Leiva-Pantoja Universidad de Guayaquil, Facultad de Ciencias Médicas, Escuela de Medicina. Ciudadela Universitaria Salvador Allende, Guayaquil, Ecuador. https://orcid.org/0009-0003-9908-0564
  • María F. Ratti Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo, Guayaquil, Ecuador. https://orcid.org/0000-0003-3725-8921

DOI:

https://doi.org/10.17268/sci.agropecu.2026.019

Keywords:

Biofertilizante, biopesticida, ecología microbiana, metabolitos secundarios, nutrición vegetal

Abstract

Los nematodos que parasitan cultivos son una seria amenaza en la producción agrícola del mundo. La preocupación por los riesgos ambientales y toxicológicos asociados al uso de sustancias químicas impulsa la búsqueda de alternativas más respetuosas con el medio ambiente para controlar los nematodos fitopatógenos. Se considera viable emplear agentes de control biológico, como las bacterias que además de tener mecanismos para controlar nematodos, también son promotoras del crecimiento de las plantas. El objetivo de esta revisión es ampliar la comprensión sobre los mecanismos de los agentes bacterianos para suprimir poblaciones de nematodos y solubilizar fósforo. Las bacterias tienen interacciones antagónicas capaces de producir metabolitos, aumentar la resistencia sistémica de las plantas y competir por espacios. Los compuestos químicos que producen las bacterias son capaces de mineralizar el fósforo orgánico que se encuentra en el suelo y facilitarlos para la adsorción de las plantas. Las bacterias de la rizosfera tienen una acción sinérgica para mejorar el crecimiento y la protección de las plantas. El enfoque de esta revisión busca aportar a una comprensión más amplia del potencial de las rizobacterias cuyo doble papel como promotoras del crecimiento vegetal y agentes nematófagos las convierte en herramientas clave para un manejo sostenible de nematodos fitoparásitos. Esta perspectiva abre la posibilidad de integrar dichos microorganismos y sus metabolitos en planes de manejo agrícola innovadores, capaces de responder tanto a las demandas productivas como a los desafíos impuestos por el cambio climático.

References

Afzal, A., & Mukhtar, T. (2024). Revolutionizing nematode management to achieve global food security goals—An overview. Heliyon, 10(3), e25325. https://doi.org/10.1016/j.heliyon.2024.e25325

Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36-49. https://doi.org/10.1016/j.micres.2019.02.001

Ahemad, M., & Kibret, M. (2013). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001

Aioub, A. A. A., Elesawy, A. E., & Ammar, E. E. (2022). Plant growth promoting rhizobacteria (PGPR) and their role in plant-parasitic nematodes control: A fresh look at an old issue. Journal of Plant Diseases and Protection, 129(6), 1305-1321. https://doi.org/10.1007/s41348-022-00642-3

Ajijah, N., Fiodor, A., Pandey, A. K., Rana, A., & Pranaw, K. (2023). Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. Diversity, 15(1), Article 1. https://doi.org/10.3390/d15010112

Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1002448

Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971

Alotaibi, B. A., Yoder, E., Brennan, M. A., & Kassem, H. S. (2021). Perception of organic farmers towards organic agriculture and role of extension. Saudi Journal of Biological Sciences, 28(5), 2980-2986. https://doi.org/10.1016/j.sjbs.2021.02.037

Amorim, D. J., Tsujimoto, T. F., Baldo, F. B., Leite, L. G., Ricardo Harakava, Wilcken, S. R. S., Gabia, A. A., & Amorim, D. J. (2024). Bacillus, Pseudomonas and Serratia control Meloidogyne incognita (Rhabditida: Meloidogynidae) and promote the growth of tomato plants. Rhizosphere, 31, 100935. https://doi.org/10.1016/j.rhisph.2024.100935

Anand, A., & Srivastava, P. K. (2012). A Molecular Description of Acid Phosphatase. Applied Biochemistry and Biotechnology, 167(8), 2174-2197. https://doi.org/10.1007/s12010-012-9694-8

Anikwe, M. A. N., & Ife, K. (2023). The role of soil ecosystem services in the circular bioeconomy. Frontiers in Soil Science, Volume 3-2023. https://www.frontiersin.org/journals/soil-science/articles/10.3389/fsoil.2023.1209100

Antil, S., Kumar, R., Pathak, D. V., & Kumari, A. (2023). Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biological Control, 183, 105244. https://doi.org/10.1016/j.biocontrol.2023.105244

Arai, Y., & Sparks, D. L. (2007). Phosphate Reaction Dynamics in Soils and Soil Components: A Multiscale Approach. En D. L. Sparks (Ed.), Advances in Agronomy (Vol. 94, pp. 135-179). Academic Press. https://doi.org/10.1016/S0065-2113(06)94003-6

Ayaz, M., Zhao, J.-T., Zhao, W., Chi, Y.-K., Ali, Q., Ali, F., Khan, A. R., Yu, Q., Yu, J.-W., Wu, W.-C., Qi, R.-D., & Huang, W.-K. (2024). Biocontrol of plant parasitic nematodes by bacteria and fungi: A multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1433716

Bakki, M., Banane, B., Marhane, O., Esmaeel, Q., Hatimi, A., Barka, E. A., Azim, K., & Bouizgarne, B. (2024). Phosphate solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1289466

Balaban, N. P., Suleimanova, A. D., Valeeva, L. R., Chastukhina, I. B., Rudakova, N. L., Sharipova, M. R., & Shakirov, E. V. (2016). Microbial Phytases and Phytate: Exploring Opportunities for Sustainable Phosphorus Management in Agriculture. American Journal of Molecular Biology, 7(1), 11-29. https://doi.org/10.4236/ajmb.2017.71002

Bargaz, A., Elhaissoufi, W., Khourchi, S., Benmrid, B., Borden, K. A., & Rchiad, Z. (2021). Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research, 252, 126842. https://doi.org/10.1016/j.micres.2021.126842

Basyony, A. G., & Abo-Zaid, G. A. (2018). Biocontrol of the root-knot nematode, Meloidogyne incognita, using an eco-friendly formulation from Bacillus subtilis, lab. And greenhouse studies. Egyptian Journal of Biological Pest Control, 28(1), 87. https://doi.org/10.1186/s41938-018-0094-4

Bestami, M. (2020). Biological control by Plant Growth Promoting Rhizobacteria. Algerian Journal of Biosciences, 1(2), 030-036. https://doi.org/10.57056/ajb.v1i2.31

Bhat, M. A., Mishra, A. K., Shah, S. N., Bhat, M. A., Jan, S., Rahman, S., Baek, K.-H., & Jan, A. T. (2024). Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Current Issues in Molecular Biology, 46(6), 5194-5222. https://doi.org/10.3390/cimb46060312

Bi, Q.-F., Zheng, B.-X., Lin, X.-Y., Li, K.-J., Liu, X.-P., Hao, X.-L., Zhang, H., Zhang, J.-B., Jaisi, D. P., & Zhu, Y.-G. (2018). The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology, 483, 56-64. https://doi.org/10.1016/j.chemgeo.2018.02.013

Borges, J. F., Campos, J. R., Rocha, S. M. B., Silva, J. M. da, Barbosa, L. M. de P., Costa, M. K. L., Puerari, H. H., Pereira, A. P. de A., de Medeiros, E. V., Mendes, L. W., & Araujo, A. S. F. (2025). Bacillus species suppress Pratylenchus in roots and shape the bacterial community in the rhizosphere of lima bean. Physiological and Molecular Plant Pathology, 139, 102753. https://doi.org/10.1016/j.pmpp.2025.102753

Cao, H., Jiao, Y., Yin, N., Li, Y., Ling, J., Mao, Z., Yang, Y., & Xie, B. (2019). Analysis of the activity and biological control efficacy of the Bacillus subtilis strain Bs-1 against Meloidogyne incognita. Crop Protection, 122, 125-135. https://doi.org/10.1016/j.cropro.2019.04.021

Castaño, A. M. P., Durango, D. P. M., Polanco-Echeverry, D., & Arias, J. A. C. (2021). Rizobacterias promotoras de crecimiento vegetal (PGPR): Una revisión sistemática 1990-2019. Revista de Investigación Agraria y Ambiental, 12(2), 161-178.

Cendra, M. del M., & Torrents, E. (2021). Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnology Advances, 49, 107734. https://doi.org/10.1016/j.biotechadv.2021.107734

Cheng, F., Wang, D., Wang, J., Wang, X., Long, M., Sun, S., Zhu, C., Cheng, J., Tan, X., Zhang, D., & Liu, Y. (2025). The nematicidal activity of Bacillus thuringiensis Cry1Ia36 expressing in Escherichia coli. Pesticide Biochemistry and Physiology, 211, 106419. https://doi.org/10.1016/j.pestbp.2025.106419

Davies, K. G., Mohan, S., Phani, V., & Srivastava, A. (2023). Exploring the mechanisms of host-specificity of a hyperparasitic bacterium (Pasteuria spp.) with potential to control tropical root-knot nematodes (Meloidogyne spp.): Insights from Caenorhabditis elegans. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1296293

de Weert, S., Vermeiren, H., Mulders, I. H. M., Kuiper, I., Hendrickx, N., Bloemberg, G. V., Vanderleyden, J., De Mot, R., & Lugtenberg, B. J. J. (2002). Flagella-Driven Chemotaxis Towards Exudate Components Is an Important Trait for Tomato Root Colonization by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions®, 15(11), 1173-1180. https://doi.org/10.1094/MPMI.2002.15.11.1173

Dehghanian, S. Z., Abdollahi, M., Charehgani, H., & Niazi, A. (2020). Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato. Biological Control, 141, 104134. https://doi.org/10.1016/j.biocontrol.2019.104134

Dejene, M., Abera, G., & Desalegn, T. (2023). The Effect of Phosphorus Fertilizer Sources and Lime on Acidic Soil Properties of Mollic Rhodic Nitisol in Welmera District, Central Ethiopia. Applied and Environmental Soil Science, 2023, e7002816. https://doi.org/10.1155/2023/7002816

Devi, P. I., Manjula, M., & Bhavani, R. V. (2022). Agrochemicals, Environment, and Human Health. Annual Review of Environment and Resources, 47(Volume 47, 2022), 399-421. https://doi.org/10.1146/annurev-environ-120920-111015

Dhir, B. (2017). Biofertilizers and Biopesticides: Eco-friendly Biological Agents. En R. Kumar, A. K. Sharma, & S. S. Ahluwalia (Eds.), Advances in Environmental Biotechnology (pp. 167-188). Springer. https://doi.org/10.1007/978-981-10-4041-2_10

Díaz-Manzano, F. E., Amora, D. X., Martínez-Gómez, Á., Moelbak, L., & Escobar, C. (2023). Biocontrol of Meloidogyne spp. In Solanum lycopersicum using a dual combination of Bacillus strains. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1077062

Diyapoglu, A., Oner, M., & Meng, M. (2022). Application Potential of Bacterial Volatile Organic Compounds in the Control of Root-Knot Nematodes. Molecules, 27(14), Article 14. https://doi.org/10.3390/molecules27144355

Dong, Z., Liu, Y., Li, M., Ci, B., Lu, X., Feng, X., Wen, S., & Ma, F. (2023). Effect of different NPK fertilization timing sequences management on soil-petiole system nutrient uptake and fertilizer utilization efficiency of drip irrigation cotton. Scientific Reports, 13(1), 14287. https://doi.org/10.1038/s41598-023-40620-9

El-Nagdi, W. M. A., & Abd-El-Khair, H. (2019). Application of Bacillus species for controlling root-knot nematode Meloidogyne incognita in eggplant. Bulletin of the National Research Centre, 43(1), 154. https://doi.org/10.1186/s42269-019-0187-6

Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., Desoky, E.-S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162(4), 759-792. https://doi.org/10.1007/s10658-021-02393-7

Emami-Karvani, Z., & Chitsaz-Esfahani, Z. (2021). Phosphorus Solubilization: Mechanisms, Recent Advancement and Future Challenge. En A. N. Yadav (Ed.), Soil Microbiomes for Sustainable Agriculture: Functional Annotation (pp. 85-131). Springer International Publishing. https://doi.org/10.1007/978-3-030-73507-4_4

Espinosa-Palomeque, B., Jiménez-Pérez, O., Ramírez-Gottfried, R. I., Preciado-Rangel, P., Buendía-García, A., Sifuentes, G. Z., Sariñana-Navarrete, M. A., & Rivas-García, T. (2025). Biocontrol of Phytopathogens Using Plant Growth Promoting Rhizobacteria: Bibliometric Analysis and Systematic Review. Horticulturae, 11(3), 271. https://doi.org/10.3390/horticulturae11030271

FAO, I. (2021). The State of Food Security and Nutrition in the World 2021: Transforming Food Systems. https://coilink.org/20.500.12592/p0dx35

Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575. https://doi.org/10.1038/nrmicro.2016.94

Furmanczyk, E. M., & Malusà, E. (2023). Control of Nematodes in Organic Horticulture Exploiting the Multifunctional Capacity of Microorganisms. Horticulturae, 9(8). https://doi.org/10.3390/horticulturae9080920

Gai, Y., & Wang, H. (2024). Plant Disease: A Growing Threat to Global Food Security. Agronomy, 14(8). https://doi.org/10.3390/agronomy14081615

Gamalero, E., & Glick, B. R. (2020). The Use of Plant Growth-Promoting Bacteria to Prevent Nematode Damage to Plants. Biology, 9(11), Article 11. https://doi.org/10.3390/biology9110381

Geng, C., Nie, X., Tang, Z., Zhang, Y., Lin, J., Sun, M., & Peng, D. (2016). A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6(1), 25012. https://doi.org/10.1038/srep25012

Ghahremani, Z., Escudero, N., Beltrán-Anadón, D., Saus, E., Cunquero, M., Andilla, J., Loza-Alvarez, P., Gabaldón, T., & Sorribas, F. J. (2020). Bacillus firmus Strain I-1582, a Nematode Antagonist by Itself and Through the Plant. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00796

Ghosh, R., Barman, S., & Mandal, N. C. (2019). Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Scientific Reports, 9, 5477. https://doi.org/10.1038/s41598-019-41726-9

Giblin-Davis, R. M., Williams, D. S., Bekal, S., Dickson, D. W., Brito, J. A., Becker, J. O., & Preston, J. F. (2003). ‘Candidatus Pasteuria usgae’ sp. Nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus. International Journal of Systematic and Evolutionary Microbiology, 53(1), 197-200. https://doi.org/10.1099/ijs.0.02292-0

Gómez Expósito, R., Postma, J., Raaijmakers, J. M., & De Bruijn, I. (2015). Diversity and Activity of Lysobacter species from Disease Suppressive Soils. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01243

Gómez-Godínez, L. J., Aguirre-Noyola, J. L., Martínez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., & Ruvalcaba-Gómez, J. M. (2023). A Look at Plant-Growth-Promoting Bacteria. Plants, 12(8), 1668. https://doi.org/10.3390/plants12081668

Guardiola-Márquez, C. E., Santos-Ramírez, M. T., Figueroa-Montes, M. L., Valencia-de los Cobos, E. O., Stamatis-Félix, I. J., Navarro-López, D. E., & Jacobo-Velázquez, D. A. (2023). Identification and Characterization of Beneficial Soil Microbial Strains for the Formulation of Biofertilizers Based on Native Plant Growth-Promoting Microorganisms Isolated from Northern Mexico. Plants, 12(18), Article 18. https://doi.org/10.3390/plants12183262

Hallama, M., Pekrun, C., Mayer-Gruner, P., Uksa, M., Abdullaeva, Y., Pilz, S., Schloter, M., Lambers, H., & Kandeler, E. (2022). The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops. Plant and Soil, 476(1), 353-373. https://doi.org/10.1007/s11104-022-05340-5

Hamze, R., & Ruiu, L. (2022). Brevibacillus laterosporus as a Natural Biological Control Agent of Soil-Dwelling Nematodes. Agronomy, 12(11), 2686. https://doi.org/10.3390/agronomy12112686

Haq, A. ul, Shahid, M., Niaz, M. Z., Mahmood, K., Yaseen, U., & Khan, M. T. A. (2022). Evaluation of Nematicidal Potential of Plant Growth Promoting Rhizobacteria against Meloidogyne incognita. Plant Bulletin, 1(2), 83-90. https://doi.org/10.55627/pbulletin.001.02.0222

Haque, Md. M., Mosharaf, M. K., Khatun, M., Haque, Md. A., Biswas, Md. S., Islam, Md. S., Islam, Md. M., Shozib, H. B., Miah, Md. M. U., Molla, A. H., & Siddiquee, M. A. (2020). Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress. Frontiers in Microbiology, 11, 542053. https://doi.org/10.3389/fmicb.2020.542053

Hu, Y., You, J., Wang, Y., Long, Y., Wang, S., Pan, F., & Yu, Z. (2022). Biocontrol efficacy of Bacillus velezensis strain YS-AT-DS1 against the root-knot nematode Meloidogyne incognita in tomato plants. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1035748

Huang, M., Bulut, A., Shrestha, B., Matera, C., Grundler, F. M. W., & Schleker, A. S. S. (2021). Bacillus firmus I-1582 promotes plant growth and impairs infection and development of the cyst nematode Heterodera schachtii over two generations. Scientific Reports, 11(1), 14114. https://doi.org/10.1038/s41598-021-93567-0

Jagadeeswaran, R., Singh, B., & Dubey, J. (2024). Isolation of Pasteuria penetrans, an obligate hyper-parasite, infecting root knot nematode, Meloidogyne spp. From the rhizosphere of pulses in India. Egyptian Journal of Biological Pest Control, 34(1), 9. https://doi.org/10.1186/s41938-024-00775-7

Jiang, C., Fan, Z., Li, Z., Niu, D., Li, Y., Zheng, M., Wang, Q., Jin, H., & Guo, J. (2020). Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. Tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Molecular Plant Pathology, 21(6), 854-870. https://doi.org/10.1111/mpp.12935

Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, e4917256. https://doi.org/10.1155/2019/4917256

Kaur, G., & Reddy, M. S. (2013). Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). The Journal of General and Applied Microbiology, 59(4), 295-303. https://doi.org/10.2323/jgam.59.295

Khasheii, B., Mahmoodi, P., & Mohammadzadeh, A. (2021). Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiological Research, 250, 126790. https://doi.org/10.1016/j.micres.2021.126790

Kokalis-Burelle, N. (2015). Pasteuria penetrans for Control of Meloidogyne incognita on Tomato and Cucumber, and M. arenaria on Snapdragon. Journal of Nematology, 47(3), 207-213.

Ku, Y.-S., Cheng, S.-S., Luk, C.-Y., Leung, H.-S., Chan, T.-Y., & Lam, H.-M. (2025a). Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC Plant Biology, 25(1), 308. https://doi.org/10.1186/s12870-025-06321-3

Ku, Y.-S., Cheng, S.-S., Luk, C.-Y., Leung, H.-S., Chan, T.-Y., & Lam, H.-M. (2025b). Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC Plant Biology, 25(1), 308. https://doi.org/10.1186/s12870-025-06321-3

Kusakabe, A., Molnár, I., & Stock, S. P. (2023). Photorhabdus-Derived Secondary Metabolites Reduce Root Infection by Meloidogyne incognita in Cowpea. Plant Disease, 107(11), 3383-3388. https://doi.org/10.1094/PDIS-11-22-2574-SC

Kusakabe, A., Wang, C., Xu, Y., Molnár, I., & Stock, S. P. (2022). Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis against Selected Plant Parasitic Nematodes of the Tylenchina Suborder. Microbiology Spectrum, 10(1), e02577-21. https://doi.org/10.1128/spectrum.02577-21

Li, Y., Xu, Z., Zhang, L., Chen, W., & Feng, G. (2024). Dynamics between soil fixation of fertilizer phosphorus and biological phosphorus mobilization determine the phosphorus budgets in agroecosystems. Agriculture, Ecosystems & Environment, 375, 109174. https://doi.org/10.1016/j.agee.2024.109174

Liu, M., Philp, J., Wang, Y., Hu, J., Wei, Y., Li, J., Ryder, M., Toh, R., Zhou, Y., Denton, M. D., Wu, Y., & Yang, H. (2022). Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 12(1), 8381. https://doi.org/10.1038/s41598-022-12472-2

Lott1, J. N. A., Ockenden, I., Raboy, V., & Batten, G. D. (2000). Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 10(1), 11-33. https://doi.org/10.1017/S0960258500000039

Luttikholt, L. W. M. (2007). Principles of organic agriculture as formulated by the International Federation of Organic Agriculture Movements. NJAS - Wageningen Journal of Life Sciences, 54(4), 347-360. https://doi.org/10.1016/S1573-5214(07)80008-X

Mahmoud, A. M., El-Eslamboly, A. A., Adam, M., & Maraey, M. A. (2025). Biocontrol of Meloidogyne incognita and Vegetative Growth Stimulation in Tomato ‘Moneymaker’ Plants by Egyptian Soil Bacteria. Egyptian Journal of Biological Pest Control, 35(1), 24. https://doi.org/10.1186/s41938-025-00860-5

Massucato, L. R., Silva, M. B., Mosela, M., Watanabe, L. S., Afonso, L., et al. (2025). Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean. Microorganisms, 13(9), 2016. https://doi.org/10.3390/microorganisms13092016

Mata, A. S., Cruz, C., Gaspar, J. R., Abrantes, I., Conceição, I. L., Morais, P. V., & Proença, D. N. (2025). Plant growth-promoting bacteria as biological control agents for sustainable agriculture: Targeting root-knot nematodes. Frontiers in Plant Science, Volume 16-2025. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1567265

Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K. L., Venkatasalam, E. P., Srinivasan, S., Ramkumar, G., Saranya, C., & Shanmuganathan, R. (2019). Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, 17, 119-128. https://doi.org/10.1016/j.bcab.2018.11.009

Migliorini, P., & Wezel, A. (2017). Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agronomy for Sustainable Development, 37(6), 63. https://doi.org/10.1007/s13593-017-0472-4

Migunova, V. D., & Sasanelli, N. (2021). Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. Plants, 10(2), Article 2. https://doi.org/10.3390/plants10020389

Nadeem, H., Niazi, P., Asif, M., Kaskavalci, G., & Ahmad, F. (2021). Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita. Plant Biology, 23(6), 1027-1036. https://doi.org/10.1111/plb.13301

Ngalimat, M. S., Mohd Hata, E., Zulperi, D., Ismail, S. I., Ismail, M. R., Mohd Zainudin, N. A. I., Saidi, N. B., & Yusof, M. T. (2021). Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms, 9(4), 682. https://doi.org/10.3390/microorganisms9040682

Niazi, P. (2024). Isolation and Characterization of a (Surfactin-Like Molecule) Produced by Bacillus subtilis: Antagonistic Impact on Root-Knot Nematodes. Scientific Research Communications, 4(2). https://doi.org/10.52460/src.2024.010

Nikoo, F. S., Sahebani, N., Aminian, H., Mokhtarnejad, L., & Ghaderi, R. (2014). Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 54(4), 383-389. https://doi.org/10.2478/jppr-2014-0057

Olabiyi, T. I., Afolabi, L. O., Gbadeyan, T. E., & Airaodion, E. O. (2024). Bio-Efficacy of Bacillus Species in the Management of Root-Knot Nematode Pest of Pepper. Asian Journal of Plant Pathology, 18(1), 29-38. https://doi.org/10.3923/ajpp.2024.29.38

Pan, L., & Cai, B. (2023). Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms, 11(12), 2904. https://doi.org/10.3390/microorganisms11122904

Pandiyan, A., Sarsan, S., Guda Sri Durga, G., & Ravikumar, H. (2024). Chapter 22—Biofertilizers and biopesticides as microbial inoculants in integrated pest management for sustainable agriculture. En R. Pratap Singh, G. Manchanda, S. Sarsan, A. Kumar, & H. Panosyan (Eds.), Microbial Essentialism (pp. 485-518). Academic Press. https://doi.org/10.1016/B978-0-443-13932-1.00010-6

Pang, F., Li, Q., Solanki, M. K., Wang, Z., Xing, Y.-X., & Dong, D.-F. (2024). Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1383813

Panpatte, D. G., Shelat, H. N., Jhala, Y. K., & Vyas, R. V. (2021). Fortified bacterial consortium – A novel approach to control root knot nematode in cucumber (cucumis sativum). Biological Control, 155, 104528. https://doi.org/10.1016/j.biocontrol.2020.104528

Parewa, H. P., Joshi, N., Meena, V. S., Joshi, S., Choudhary, A., Ram, M., Meena, S. C., & Jain, L. K. (2021). Chapter 9—Role of biofertilizers and biopesticides in organic farming. En V. S. Meena, S. K. Meena, A. Rakshit, J. Stanley, & C. Srinivasarao (Eds.), Advances in Organic Farming (pp. 133-159). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822358-1.00009-2

Pires, D., Vicente, C. S. L., Menéndez, E., Faria, J. M. S., Rusinque, L., Camacho, M. J., & Inácio, M. L. (2022). The Fight against Plant-Parasitic Nematodes: Current Status of Bacterial and Fungal Biocontrol Agents. Pathogens, 11(10). https://doi.org/10.3390/pathogens11101178

Pradhan, N., Singh, S., Saxena, G., Pradhan, N., Koul, M., Kharkwal, A. C., & Sayyed, R. (2025). A review on microbe–mineral transformations and their impact on plant growth. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2025.1549022

Proença, D. N., Heine, T., Senges, C. H. R., Bandow, J. E., Morais, P. V., & Tischler, D. (2019). Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Frontiers in Microbiology, 10, 2166. https://doi.org/10.3389/fmicb.2019.02166

Puissant, J., Villenave, C., Chauvin, C., Plassard, C., Blanchart, E., & Trap, J. (2021). Quantification of the global impact of agricultural practices on soil nematodes: A meta-analysis. Soil Biology and Biochemistry, 161, 108383. https://doi.org/10.1016/j.soilbio.2021.108383

Punia, A., Dehal, L., & Chauhan, N. S. (2023). Evidence of the Toxic Potentials of Agrochemicals on Human Health and Biodiversity. En M. C. Ogwu & S. Chibueze Izah (Eds.), One Health Implications of Agrochemicals and their Sustainable Alternatives (pp. 105-135). Springer Nature. https://doi.org/10.1007/978-981-99-3439-3_4

Quevedo, A., Magdama, F., Castro, J., & Vera-Morales, M. (2022). Interacciones ecológicas de los hongos nematófagos y su potencial uso en cultivos tropicales. Scientia Agropecuaria, 13(1), 97-108. https://doi.org/10.17268/sci.agropecu.2022.009

Radwan, W. H., Abdelhafez, A. A. M., Mahgoub, A. E., & Zayed, M. S. (2024). Streptomyces avermitilis MICNEMA2022: A new biorational strain for producing abamectin as an integrated nematode management agent. BMC Microbiology, 24(1), 329. https://doi.org/10.1186/s12866-024-03466-3

Rafique, M., Naveed, M., Mumtaz, M. Z., Niaz, A., Alamri, S., et al. (2024). Unlocking the potential of biofilm-forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.). Scientific Reports, 14(1), 15546. https://doi.org/10.1038/s41598-024-66562-4

Ramalakshmi, A., Sharmila, R., Iniyakumar, M., & Gomathi, V. (2020). Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egyptian Journal of Biological Pest Control, 30(1), 90. https://doi.org/10.1186/s41938-020-00293-2

Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68. https://doi.org/10.1007/s42729-020-00342-7

Rawat, P., Shankhdhar, D., & Shankhdhar, S. C. (2020). Plant Growth-Promoting Rhizobacteria: A Booster for Ameliorating Soil Health and Agriculture Production. En B. Giri & A. Varma (Eds.), Soil Health (pp. 47-68). Springer International Publishing. https://doi.org/10.1007/978-3-030-44364-1_3

Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., et al (2021). The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences of the United States of America, 118(23). https://doi.org/10.1073/pnas.2022239118

Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4), 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2

Saffeullah, P., Nabi, N., Liaqat, S., Anjum, N. A., Siddiqi, T. O., & Umar, S. (2021). Organic Agriculture: Principles, Current Status, and Significance. En K. R. Hakeem, G. H. Dar, M. A. Mehmood, & R. A. Bhat (Eds.), Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health (pp. 17-37). Springer International Publishing. https://doi.org/10.1007/978-3-030-48771-3_2

Sagar, L., Singh, S., Sharma, A., Maitra, S., Attri, M., Sahoo, R. K., Ghasil, B. P., Shankar, T., Gaikwad, D. J., Sairam, M., Sahoo, U., Hossain, A., & Roy, S. (2023). Role of Soil Microbes against Abiotic Stresses Induced Oxidative Stresses in Plants. En P. Mathur, R. Kapoor, & S. Roy (Eds.), Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate (pp. 149-177). Springer Nature. https://doi.org/10.1007/978-981-99-0030-5_7

Saharan, B., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res, 21, 1-30.

Said, M. (2023). An Overview of Impact of Agrochemicals on Human Health and Natural Environment. Scientific Research Communications, 3(2). https://doi.org/10.52460/src.2023.009

Santoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, M. del C., Peña-Cabriales, J. J., & Farías-Rodríguez, R. (2010). Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens ZUM80 hacia hongos fitopatógenos. Terra Latinoamericana, 28(1), 53-60.

Seenivasagan, R., & Babalola, O. O. (2021). Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. Biology, 10(11). https://doi.org/10.3390/biology10111111

Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16134

Sharma, M., Saleh, D., Charron, J.-B., & Jabaji, S. (2020). A Crosstalk Between Brachypodium Root Exudates, Organic Acids, and Bacillus velezensis B26, a Growth Promoting Bacterium. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.575578

Sharma, S., Sharma, S., Panneerselvam, S., Kamaraj, A., Selvaraj, G., & Kumar, P. (2024). Microbial Biofertilizers for Soil Health. En R. K. Bhatia & A. Walia (Eds.), Advancements in Microbial Biotechnology for Soil Health (pp. 119-147). Springer Nature. https://doi.org/10.1007/978-981-99-9482-3_7

Shrivastava, M., Srivastava, P. C., & D’Souza, S. F. (2018). Phosphate-Solubilizing Microbes: Diversity and Phosphates Solubilization Mechanism. En V. S. Meena (Ed.), Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement (pp. 137-165). Springer. https://doi.org/10.1007/978-981-13-0044-8_5

Siddiqui, Z. A., Iqbal, A., & Mahmood, I. (2001). Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology, 16(2), 179-185. https://doi.org/10.1016/S0929-1393(00)00083-4

Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture, 13(2), Article 2. https://doi.org/10.3390/agriculture13020462

Singh, R. P., & Jha, P. N. (2016). The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.). PLOS ONE, 11(6), e0155026. https://doi.org/10.1371/journal.pone.0155026

Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: A Threat to Sustainability of Agriculture. Procedia Environmental Sciences, 29, 215-216. https://doi.org/10.1016/j.proenv.2015.07.270

Song, C., Wang, W., Gan, Y., Wang, L., Chang, X., Wang, Y., & Yang, W. (2022). Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercropping systems. Journal of the Science of Food and Agriculture, 102(4), 1430-1442. https://doi.org/10.1002/jsfa.11477

Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2020). From Isolation of Phosphate Solubilizing Microbes to Their Formulation and Use as Biofertilizers: Status and Needs. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00425

Stucky, T., Hochstrasser, M., Meyer, S., Segessemann, T., Ruthes, A. C., Ahrens, C. H., Pelludat, C., & Dahlin, P. (2023). A Novel Robust Screening Assay Identifies Pseudomonas Strains as Reliable Antagonists of the Root-Knot Nematode Meloidogyne incognita. Microorganisms, 11(8), 2011. https://doi.org/10.3390/microorganisms11082011

Suleimanova, A., Bulmakova, D., Sokolnikova, L., Egorova, E., Itkina, D., Kuzminova, O., Gizatullina, A., & Sharipova, M. (2023). Phosphate Solubilization and Plant Growth Promotion by Pantoea brenneri Soil Isolates. Microorganisms, 11(5), 1136. https://doi.org/10.3390/microorganisms11051136

Sun, X., Zhang, R., Ding, M., Liu, Y., & Li, L. (2021). Biocontrol of the root-knot nematode Meloidogyne incognita by a nematicidal bacterium Pseudomonas simiae MB751 with cyclic dipeptide. Pest Management Science, 77(10), 4365-4374. https://doi.org/10.1002/ps.6470

Sun, Y., Guo, Y., Pei, Y., Chen, Y., Feng, T., & Long, H. (2024). Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper. Agriculture, 14(11), 1920. https://doi.org/10.3390/agriculture14111920

Susič, N., Janežič, S., Rupnik, M., & Stare, B. G. (2020). Whole Genome Sequencing and Comparative Genomics of Two Nematicidal Bacillus Strains Reveals a Wide Range of Possible Virulence Factors. G3: Genes|Genomes|Genetics, 10(3), 881. https://doi.org/10.1534/g3.119.400716

Timofeeva, A., Galyamova, M., & Sedykh, S. (2022). Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants, 11(16), 2119. https://doi.org/10.3390/plants11162119

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants, 11(22), 3065. https://doi.org/10.3390/plants11223065

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074

Timper, P., Liu, C., Davis, R. F., & Wu, T. (2016). Influence of crop production practices on Pasteuria penetrans and suppression of Meloidogyne incognita. Biological Control, 99, 64-71. https://doi.org/10.1016/j.biocontrol.2016.04.013

Udpuay, S., Ullah, H., Himanshu, S. K., Tisarum, R., Praseartkul, P., Cha-um, S., & Datta, A. (2024). Effects of microbial biofertilizer on growth, physio-biochemical traits, fruit yield, and water productivity of okra under drought stress. Biocatalysis and Agricultural Biotechnology, 58, 103125. https://doi.org/10.1016/j.bcab.2024.103125

Uzah, G. A., Ire, F. S., & Ogugbue, C. J. (2024). Isolation and molecular characterization of microorganisms with biofertilizer potential. Scientia Africana, 23(1), Article 1. https://doi.org/10.4314/sa.v23i1.15

Vasantha-Srinivasan, P., Park, K. B., Kim, K. Y., Jung, W.-J., & Han, Y. S. (2025). The role of Bacillus species in the management of plant-parasitic nematodes. Frontiers in Microbiology, Volume 15-2024. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1510036

Vera-Morales, M., Castañeda-Ruiz, R. F., Sosa, D., Arias-Vega, C., Quevedo, A., & Ratti, M. F. (2024). Compuestos bioactivos de bacterias y hongos en el control de nematodos fitopatógenos: Mecanismos de acción, interacciones y aplicaciones. Scientia Agropecuaria, 15(1), Article 1. https://doi.org/10.17268/sci.agropecu.2024.011

Vera-Morales, M., López Medina, S. E., Naranjo-Morán, J., Quevedo, A., & Ratti, M. F. (2023). Nematophagous Fungi: A Review of Their Phosphorus Solubilization Potential. Microorganisms, 11(1), 137. https://doi.org/10.3390/microorganisms11010137

Wang, B., Chen, C., Xiao, Y.-M., Chen, K.-Y., Wang, J., Zhao, S., Liu, N., Li, J.-N., & Zhou, G.-Y. (2024). Trophic relationships between protists and bacteria and fungi drive the biogeography of rhizosphere soil microbial community and impact plant physiological and ecological functions. Microbiological Research, 280, 127603. https://doi.org/10.1016/j.micres.2024.127603

Wang, Y., & Lambers, H. (2020). Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives. Plant and Soil, 447(1), 135-156. https://doi.org/10.1007/s11104-019-03972-8

Willer, H., Trávníček, J., & Schlatter, B. (2024). The World of Organic Agriculture. Statistics and Emerging Trends 2024. FiBL and IFAOM. https://orgprints.org/id/eprint/52272/1/1747-organic-world-2024_light.pdf

Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., McInroy, J. A., & Lawrence, G. W. (2017). Biological Control of Meloidogyne incognita by Spore-forming Plant Growth-promoting Rhizobacteria on Cotton. Plant Disease, 101(5), 774-784. https://doi.org/10.1094/PDIS-09-16-1369-RE

Xie, B., Wei, X., Wan, C., Zhao, W., Song, R., Xin, S., & Song, K. (2024). Exploring the Biological Pathways of Siderophores and Their Multidisciplinary Applications: A Comprehensive Review. Molecules, 29(10), 2318. https://doi.org/10.3390/molecules29102318

Xing, Y., Wang, X., & Mustafa, A. (2025). Exploring the link between soil health and crop productivity. Ecotoxicology and Environmental Safety, 289, 117703. https://doi.org/10.1016/j.ecoenv.2025.117703

Xiong, J., Zhou, Q., Luo, H., Xia, L., Li, L., Sun, M., & Yu, Z. (2015). Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 31(4), 661-667. https://doi.org/10.1007/s11274-015-1820-7

Yadav, A. N., Kumar, R., Kumar, S., Kumar, V., Sugitha, T. C. K., Singh, B., Chauahan, V. S., Dhaliwal, H. S., & Saxena, A. K. (2017). Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. Journal of Applied Biology & Biotechnology, 5(6), 45-45. https://doi.org/10.7324/JABB.2017.50607

Yadav, S. P., Sharma, C., Pathak, P., Kanaujia, A., Saxena, M. J., & Kalra, A. (2025). Management of phyto-parasitic nematodes using bacteria and fungi and their consortia as biocontrol agents. Environmental Science: Advances, 4(3), 335-354. https://doi.org/10.1039/D4VA00216D

Ye, S., Yan, R., Li, X., Lin, Y., Yang, Z., Ma, Y., & Ding, Z. (2022). Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1025727

Zboralski, A., & Filion, M. (2020). Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Computational and Structural Biotechnology Journal, 18, 3539-3554. https://doi.org/10.1016/j.csbj.2020.11.025

Zhu, L., Huang, J., Lu, X., & Zhou, C. (2022). Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.952397

Zoubi, B., Hijri, M., Mokrini, F., Housseini, A. I., & Qaddoury, A. (2025). Nematicidal and plant growth-promoting rhizobacteria: A sustainable strategy for controlling Tylenchulus semipenetrans and enhancing citrus growth. International Microbiology: The Official Journal of the Spanish Society for Microbiology. https://doi.org/10.1007/s10123-025-00652-9

Zuluaga, M. Y. A., de Oliveira, A. L. M., Valentinuzzi, F., Jayme, N. S., Monterisi, S., Fattorini, R., Cesco, S., & Pii, Y. (2023). An insight into the role of the organic acids produced by Enterobacter sp. Strain 15S in solubilizing tricalcium phosphate: In situ study on cucumber. BMC Microbiology, 23(1), 184. https://doi.org/10.1186/s12866-023-02918-6

Published

2026-01-16

How to Cite

Vera-Morales, M. ., Carpio, G. ., Leiva-Pantoja, E. ., & Ratti, M. F. . (2026). Mecanismos y aplicaciones de las rizobacterias en la adquisición del fósforo y biocontrol de nematodos fitopatógenos. Scientia Agropecuaria, 17(1), 269-287. https://doi.org/10.17268/sci.agropecu.2026.019

Issue

Section

Review Articles

Most read articles by the same author(s)