Mechanisms and applications of rhizobacteria in phosphorus acquisition and biocontrol of phytopathogenic nematodes
DOI:
https://doi.org/10.17268/sci.agropecu.2026.019Palabras clave:
Biofertilizer, biopesticide, microbial ecology, secondary metabolites, vegetative nutritionResumen
Parasitic nematodes in crops are a serious threat in worldwide agricultural production. The concerns regarding the environmental and toxicological risks associated with the usage of chemical substances encourage the pursuit of more environmentally friendly alternatives to control phytopathogenic nematodes. It's been considered viable to employ biological control agents, like bacteria, which besides having mechanisms that can control nematodes are also growth promoters for plants. This review's goal is to broaden the comprehension over bacterial agent mechanisms to suppress nematodes population and its phosphorus solubilization capability. Bacteria have antagonist interactions capable of producing metabolites, increasing the systemic resistance to plants and space competition. Chemical compounds produced by bacteria can mineralize organic phosphorus from the soil and supply it for plant adsorption. Rhizospheric bacteria have synergic action to improve growth and plant protection. This review's approach aims to contribute to the understanding of rhizobacterial potential, which dual action in vegetative growth and as nematophagus agents, makes them key tools for a sustainable management of phytopathogenic nematodes. This perspective opens the possibility to include these microorganisms and their metabolites in innovative plans for agricultural management, which can respond to productivity demand and climate change challenges.
Citas
Afzal, A., & Mukhtar, T. (2024). Revolutionizing nematode management to achieve global food security goals—An overview. Heliyon, 10(3), e25325. https://doi.org/10.1016/j.heliyon.2024.e25325
Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36-49. https://doi.org/10.1016/j.micres.2019.02.001
Ahemad, M., & Kibret, M. (2013). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
Aioub, A. A. A., Elesawy, A. E., & Ammar, E. E. (2022). Plant growth promoting rhizobacteria (PGPR) and their role in plant-parasitic nematodes control: A fresh look at an old issue. Journal of Plant Diseases and Protection, 129(6), 1305-1321. https://doi.org/10.1007/s41348-022-00642-3
Ajijah, N., Fiodor, A., Pandey, A. K., Rana, A., & Pranaw, K. (2023). Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. Diversity, 15(1), Article 1. https://doi.org/10.3390/d15010112
Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1002448
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971
Alotaibi, B. A., Yoder, E., Brennan, M. A., & Kassem, H. S. (2021). Perception of organic farmers towards organic agriculture and role of extension. Saudi Journal of Biological Sciences, 28(5), 2980-2986. https://doi.org/10.1016/j.sjbs.2021.02.037
Amorim, D. J., Tsujimoto, T. F., Baldo, F. B., Leite, L. G., Ricardo Harakava, Wilcken, S. R. S., Gabia, A. A., & Amorim, D. J. (2024). Bacillus, Pseudomonas and Serratia control Meloidogyne incognita (Rhabditida: Meloidogynidae) and promote the growth of tomato plants. Rhizosphere, 31, 100935. https://doi.org/10.1016/j.rhisph.2024.100935
Anand, A., & Srivastava, P. K. (2012). A Molecular Description of Acid Phosphatase. Applied Biochemistry and Biotechnology, 167(8), 2174-2197. https://doi.org/10.1007/s12010-012-9694-8
Anikwe, M. A. N., & Ife, K. (2023). The role of soil ecosystem services in the circular bioeconomy. Frontiers in Soil Science, Volume 3-2023. https://www.frontiersin.org/journals/soil-science/articles/10.3389/fsoil.2023.1209100
Antil, S., Kumar, R., Pathak, D. V., & Kumari, A. (2023). Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biological Control, 183, 105244. https://doi.org/10.1016/j.biocontrol.2023.105244
Arai, Y., & Sparks, D. L. (2007). Phosphate Reaction Dynamics in Soils and Soil Components: A Multiscale Approach. En D. L. Sparks (Ed.), Advances in Agronomy (Vol. 94, pp. 135-179). Academic Press. https://doi.org/10.1016/S0065-2113(06)94003-6
Ayaz, M., Zhao, J.-T., Zhao, W., Chi, Y.-K., Ali, Q., Ali, F., Khan, A. R., Yu, Q., Yu, J.-W., Wu, W.-C., Qi, R.-D., & Huang, W.-K. (2024). Biocontrol of plant parasitic nematodes by bacteria and fungi: A multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1433716
Bakki, M., Banane, B., Marhane, O., Esmaeel, Q., Hatimi, A., Barka, E. A., Azim, K., & Bouizgarne, B. (2024). Phosphate solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1289466
Balaban, N. P., Suleimanova, A. D., Valeeva, L. R., Chastukhina, I. B., Rudakova, N. L., Sharipova, M. R., & Shakirov, E. V. (2016). Microbial Phytases and Phytate: Exploring Opportunities for Sustainable Phosphorus Management in Agriculture. American Journal of Molecular Biology, 7(1), 11-29. https://doi.org/10.4236/ajmb.2017.71002
Bargaz, A., Elhaissoufi, W., Khourchi, S., Benmrid, B., Borden, K. A., & Rchiad, Z. (2021). Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research, 252, 126842. https://doi.org/10.1016/j.micres.2021.126842
Basyony, A. G., & Abo-Zaid, G. A. (2018). Biocontrol of the root-knot nematode, Meloidogyne incognita, using an eco-friendly formulation from Bacillus subtilis, lab. And greenhouse studies. Egyptian Journal of Biological Pest Control, 28(1), 87. https://doi.org/10.1186/s41938-018-0094-4
Bestami, M. (2020). Biological control by Plant Growth Promoting Rhizobacteria. Algerian Journal of Biosciences, 1(2), 030-036. https://doi.org/10.57056/ajb.v1i2.31
Bhat, M. A., Mishra, A. K., Shah, S. N., Bhat, M. A., Jan, S., Rahman, S., Baek, K.-H., & Jan, A. T. (2024). Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Current Issues in Molecular Biology, 46(6), 5194-5222. https://doi.org/10.3390/cimb46060312
Bi, Q.-F., Zheng, B.-X., Lin, X.-Y., Li, K.-J., Liu, X.-P., Hao, X.-L., Zhang, H., Zhang, J.-B., Jaisi, D. P., & Zhu, Y.-G. (2018). The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology, 483, 56-64. https://doi.org/10.1016/j.chemgeo.2018.02.013
Borges, J. F., Campos, J. R., Rocha, S. M. B., Silva, J. M. da, Barbosa, L. M. de P., Costa, M. K. L., Puerari, H. H., Pereira, A. P. de A., de Medeiros, E. V., Mendes, L. W., & Araujo, A. S. F. (2025). Bacillus species suppress Pratylenchus in roots and shape the bacterial community in the rhizosphere of lima bean. Physiological and Molecular Plant Pathology, 139, 102753. https://doi.org/10.1016/j.pmpp.2025.102753
Cao, H., Jiao, Y., Yin, N., Li, Y., Ling, J., Mao, Z., Yang, Y., & Xie, B. (2019). Analysis of the activity and biological control efficacy of the Bacillus subtilis strain Bs-1 against Meloidogyne incognita. Crop Protection, 122, 125-135. https://doi.org/10.1016/j.cropro.2019.04.021
Castaño, A. M. P., Durango, D. P. M., Polanco-Echeverry, D., & Arias, J. A. C. (2021). Rizobacterias promotoras de crecimiento vegetal (PGPR): Una revisión sistemática 1990-2019. Revista de Investigación Agraria y Ambiental, 12(2), 161-178.
Cendra, M. del M., & Torrents, E. (2021). Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnology Advances, 49, 107734. https://doi.org/10.1016/j.biotechadv.2021.107734
Cheng, F., Wang, D., Wang, J., Wang, X., Long, M., Sun, S., Zhu, C., Cheng, J., Tan, X., Zhang, D., & Liu, Y. (2025). The nematicidal activity of Bacillus thuringiensis Cry1Ia36 expressing in Escherichia coli. Pesticide Biochemistry and Physiology, 211, 106419. https://doi.org/10.1016/j.pestbp.2025.106419
Davies, K. G., Mohan, S., Phani, V., & Srivastava, A. (2023). Exploring the mechanisms of host-specificity of a hyperparasitic bacterium (Pasteuria spp.) with potential to control tropical root-knot nematodes (Meloidogyne spp.): Insights from Caenorhabditis elegans. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1296293
de Weert, S., Vermeiren, H., Mulders, I. H. M., Kuiper, I., Hendrickx, N., Bloemberg, G. V., Vanderleyden, J., De Mot, R., & Lugtenberg, B. J. J. (2002). Flagella-Driven Chemotaxis Towards Exudate Components Is an Important Trait for Tomato Root Colonization by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions®, 15(11), 1173-1180. https://doi.org/10.1094/MPMI.2002.15.11.1173
Dehghanian, S. Z., Abdollahi, M., Charehgani, H., & Niazi, A. (2020). Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato. Biological Control, 141, 104134. https://doi.org/10.1016/j.biocontrol.2019.104134
Dejene, M., Abera, G., & Desalegn, T. (2023). The Effect of Phosphorus Fertilizer Sources and Lime on Acidic Soil Properties of Mollic Rhodic Nitisol in Welmera District, Central Ethiopia. Applied and Environmental Soil Science, 2023, e7002816. https://doi.org/10.1155/2023/7002816
Devi, P. I., Manjula, M., & Bhavani, R. V. (2022). Agrochemicals, Environment, and Human Health. Annual Review of Environment and Resources, 47(Volume 47, 2022), 399-421. https://doi.org/10.1146/annurev-environ-120920-111015
Dhir, B. (2017). Biofertilizers and Biopesticides: Eco-friendly Biological Agents. En R. Kumar, A. K. Sharma, & S. S. Ahluwalia (Eds.), Advances in Environmental Biotechnology (pp. 167-188). Springer. https://doi.org/10.1007/978-981-10-4041-2_10
Díaz-Manzano, F. E., Amora, D. X., Martínez-Gómez, Á., Moelbak, L., & Escobar, C. (2023). Biocontrol of Meloidogyne spp. In Solanum lycopersicum using a dual combination of Bacillus strains. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1077062
Diyapoglu, A., Oner, M., & Meng, M. (2022). Application Potential of Bacterial Volatile Organic Compounds in the Control of Root-Knot Nematodes. Molecules, 27(14), Article 14. https://doi.org/10.3390/molecules27144355
Dong, Z., Liu, Y., Li, M., Ci, B., Lu, X., Feng, X., Wen, S., & Ma, F. (2023). Effect of different NPK fertilization timing sequences management on soil-petiole system nutrient uptake and fertilizer utilization efficiency of drip irrigation cotton. Scientific Reports, 13(1), 14287. https://doi.org/10.1038/s41598-023-40620-9
El-Nagdi, W. M. A., & Abd-El-Khair, H. (2019). Application of Bacillus species for controlling root-knot nematode Meloidogyne incognita in eggplant. Bulletin of the National Research Centre, 43(1), 154. https://doi.org/10.1186/s42269-019-0187-6
Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., Desoky, E.-S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162(4), 759-792. https://doi.org/10.1007/s10658-021-02393-7
Emami-Karvani, Z., & Chitsaz-Esfahani, Z. (2021). Phosphorus Solubilization: Mechanisms, Recent Advancement and Future Challenge. En A. N. Yadav (Ed.), Soil Microbiomes for Sustainable Agriculture: Functional Annotation (pp. 85-131). Springer International Publishing. https://doi.org/10.1007/978-3-030-73507-4_4
Espinosa-Palomeque, B., Jiménez-Pérez, O., Ramírez-Gottfried, R. I., Preciado-Rangel, P., Buendía-García, A., Sifuentes, G. Z., Sariñana-Navarrete, M. A., & Rivas-García, T. (2025). Biocontrol of Phytopathogens Using Plant Growth Promoting Rhizobacteria: Bibliometric Analysis and Systematic Review. Horticulturae, 11(3), 271. https://doi.org/10.3390/horticulturae11030271
FAO, I. (2021). The State of Food Security and Nutrition in the World 2021: Transforming Food Systems. https://coilink.org/20.500.12592/p0dx35
Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575. https://doi.org/10.1038/nrmicro.2016.94
Furmanczyk, E. M., & Malusà, E. (2023). Control of Nematodes in Organic Horticulture Exploiting the Multifunctional Capacity of Microorganisms. Horticulturae, 9(8). https://doi.org/10.3390/horticulturae9080920
Gai, Y., & Wang, H. (2024). Plant Disease: A Growing Threat to Global Food Security. Agronomy, 14(8). https://doi.org/10.3390/agronomy14081615
Gamalero, E., & Glick, B. R. (2020). The Use of Plant Growth-Promoting Bacteria to Prevent Nematode Damage to Plants. Biology, 9(11), Article 11. https://doi.org/10.3390/biology9110381
Geng, C., Nie, X., Tang, Z., Zhang, Y., Lin, J., Sun, M., & Peng, D. (2016). A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6(1), 25012. https://doi.org/10.1038/srep25012
Ghahremani, Z., Escudero, N., Beltrán-Anadón, D., Saus, E., Cunquero, M., Andilla, J., Loza-Alvarez, P., Gabaldón, T., & Sorribas, F. J. (2020). Bacillus firmus Strain I-1582, a Nematode Antagonist by Itself and Through the Plant. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00796
Ghosh, R., Barman, S., & Mandal, N. C. (2019). Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Scientific Reports, 9, 5477. https://doi.org/10.1038/s41598-019-41726-9
Giblin-Davis, R. M., Williams, D. S., Bekal, S., Dickson, D. W., Brito, J. A., Becker, J. O., & Preston, J. F. (2003). ‘Candidatus Pasteuria usgae’ sp. Nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus. International Journal of Systematic and Evolutionary Microbiology, 53(1), 197-200. https://doi.org/10.1099/ijs.0.02292-0
Gómez Expósito, R., Postma, J., Raaijmakers, J. M., & De Bruijn, I. (2015). Diversity and Activity of Lysobacter species from Disease Suppressive Soils. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01243
Gómez-Godínez, L. J., Aguirre-Noyola, J. L., Martínez-Romero, E., Arteaga-Garibay, R. I., Ireta-Moreno, J., & Ruvalcaba-Gómez, J. M. (2023). A Look at Plant-Growth-Promoting Bacteria. Plants, 12(8), 1668. https://doi.org/10.3390/plants12081668
Guardiola-Márquez, C. E., Santos-Ramírez, M. T., Figueroa-Montes, M. L., Valencia-de los Cobos, E. O., Stamatis-Félix, I. J., Navarro-López, D. E., & Jacobo-Velázquez, D. A. (2023). Identification and Characterization of Beneficial Soil Microbial Strains for the Formulation of Biofertilizers Based on Native Plant Growth-Promoting Microorganisms Isolated from Northern Mexico. Plants, 12(18), Article 18. https://doi.org/10.3390/plants12183262
Hallama, M., Pekrun, C., Mayer-Gruner, P., Uksa, M., Abdullaeva, Y., Pilz, S., Schloter, M., Lambers, H., & Kandeler, E. (2022). The role of microbes in the increase of organic phosphorus availability in the rhizosheath of cover crops. Plant and Soil, 476(1), 353-373. https://doi.org/10.1007/s11104-022-05340-5
Hamze, R., & Ruiu, L. (2022). Brevibacillus laterosporus as a Natural Biological Control Agent of Soil-Dwelling Nematodes. Agronomy, 12(11), 2686. https://doi.org/10.3390/agronomy12112686
Haq, A. ul, Shahid, M., Niaz, M. Z., Mahmood, K., Yaseen, U., & Khan, M. T. A. (2022). Evaluation of Nematicidal Potential of Plant Growth Promoting Rhizobacteria against Meloidogyne incognita. Plant Bulletin, 1(2), 83-90. https://doi.org/10.55627/pbulletin.001.02.0222
Haque, Md. M., Mosharaf, M. K., Khatun, M., Haque, Md. A., Biswas, Md. S., Islam, Md. S., Islam, Md. M., Shozib, H. B., Miah, Md. M. U., Molla, A. H., & Siddiquee, M. A. (2020). Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress. Frontiers in Microbiology, 11, 542053. https://doi.org/10.3389/fmicb.2020.542053
Hu, Y., You, J., Wang, Y., Long, Y., Wang, S., Pan, F., & Yu, Z. (2022). Biocontrol efficacy of Bacillus velezensis strain YS-AT-DS1 against the root-knot nematode Meloidogyne incognita in tomato plants. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1035748
Huang, M., Bulut, A., Shrestha, B., Matera, C., Grundler, F. M. W., & Schleker, A. S. S. (2021). Bacillus firmus I-1582 promotes plant growth and impairs infection and development of the cyst nematode Heterodera schachtii over two generations. Scientific Reports, 11(1), 14114. https://doi.org/10.1038/s41598-021-93567-0
Jagadeeswaran, R., Singh, B., & Dubey, J. (2024). Isolation of Pasteuria penetrans, an obligate hyper-parasite, infecting root knot nematode, Meloidogyne spp. From the rhizosphere of pulses in India. Egyptian Journal of Biological Pest Control, 34(1), 9. https://doi.org/10.1186/s41938-024-00775-7
Jiang, C., Fan, Z., Li, Z., Niu, D., Li, Y., Zheng, M., Wang, Q., Jin, H., & Guo, J. (2020). Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. Tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Molecular Plant Pathology, 21(6), 854-870. https://doi.org/10.1111/mpp.12935
Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, e4917256. https://doi.org/10.1155/2019/4917256
Kaur, G., & Reddy, M. S. (2013). Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). The Journal of General and Applied Microbiology, 59(4), 295-303. https://doi.org/10.2323/jgam.59.295
Khasheii, B., Mahmoodi, P., & Mohammadzadeh, A. (2021). Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiological Research, 250, 126790. https://doi.org/10.1016/j.micres.2021.126790
Kokalis-Burelle, N. (2015). Pasteuria penetrans for Control of Meloidogyne incognita on Tomato and Cucumber, and M. arenaria on Snapdragon. Journal of Nematology, 47(3), 207-213.
Ku, Y.-S., Cheng, S.-S., Luk, C.-Y., Leung, H.-S., Chan, T.-Y., & Lam, H.-M. (2025a). Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC Plant Biology, 25(1), 308. https://doi.org/10.1186/s12870-025-06321-3
Ku, Y.-S., Cheng, S.-S., Luk, C.-Y., Leung, H.-S., Chan, T.-Y., & Lam, H.-M. (2025b). Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC Plant Biology, 25(1), 308. https://doi.org/10.1186/s12870-025-06321-3
Kusakabe, A., Molnár, I., & Stock, S. P. (2023). Photorhabdus-Derived Secondary Metabolites Reduce Root Infection by Meloidogyne incognita in Cowpea. Plant Disease, 107(11), 3383-3388. https://doi.org/10.1094/PDIS-11-22-2574-SC
Kusakabe, A., Wang, C., Xu, Y., Molnár, I., & Stock, S. P. (2022). Selective Toxicity of Secondary Metabolites from the Entomopathogenic Bacterium Photorhabdus luminescens sonorensis against Selected Plant Parasitic Nematodes of the Tylenchina Suborder. Microbiology Spectrum, 10(1), e02577-21. https://doi.org/10.1128/spectrum.02577-21
Li, Y., Xu, Z., Zhang, L., Chen, W., & Feng, G. (2024). Dynamics between soil fixation of fertilizer phosphorus and biological phosphorus mobilization determine the phosphorus budgets in agroecosystems. Agriculture, Ecosystems & Environment, 375, 109174. https://doi.org/10.1016/j.agee.2024.109174
Liu, M., Philp, J., Wang, Y., Hu, J., Wei, Y., Li, J., Ryder, M., Toh, R., Zhou, Y., Denton, M. D., Wu, Y., & Yang, H. (2022). Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 12(1), 8381. https://doi.org/10.1038/s41598-022-12472-2
Lott1, J. N. A., Ockenden, I., Raboy, V., & Batten, G. D. (2000). Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 10(1), 11-33. https://doi.org/10.1017/S0960258500000039
Luttikholt, L. W. M. (2007). Principles of organic agriculture as formulated by the International Federation of Organic Agriculture Movements. NJAS - Wageningen Journal of Life Sciences, 54(4), 347-360. https://doi.org/10.1016/S1573-5214(07)80008-X
Mahmoud, A. M., El-Eslamboly, A. A., Adam, M., & Maraey, M. A. (2025). Biocontrol of Meloidogyne incognita and Vegetative Growth Stimulation in Tomato ‘Moneymaker’ Plants by Egyptian Soil Bacteria. Egyptian Journal of Biological Pest Control, 35(1), 24. https://doi.org/10.1186/s41938-025-00860-5
Massucato, L. R., Silva, M. B., Mosela, M., Watanabe, L. S., Afonso, L., et al. (2025). Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean. Microorganisms, 13(9), 2016. https://doi.org/10.3390/microorganisms13092016
Mata, A. S., Cruz, C., Gaspar, J. R., Abrantes, I., Conceição, I. L., Morais, P. V., & Proença, D. N. (2025). Plant growth-promoting bacteria as biological control agents for sustainable agriculture: Targeting root-knot nematodes. Frontiers in Plant Science, Volume 16-2025. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1567265
Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K. L., Venkatasalam, E. P., Srinivasan, S., Ramkumar, G., Saranya, C., & Shanmuganathan, R. (2019). Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, 17, 119-128. https://doi.org/10.1016/j.bcab.2018.11.009
Migliorini, P., & Wezel, A. (2017). Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agronomy for Sustainable Development, 37(6), 63. https://doi.org/10.1007/s13593-017-0472-4
Migunova, V. D., & Sasanelli, N. (2021). Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. Plants, 10(2), Article 2. https://doi.org/10.3390/plants10020389
Nadeem, H., Niazi, P., Asif, M., Kaskavalci, G., & Ahmad, F. (2021). Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita. Plant Biology, 23(6), 1027-1036. https://doi.org/10.1111/plb.13301
Ngalimat, M. S., Mohd Hata, E., Zulperi, D., Ismail, S. I., Ismail, M. R., Mohd Zainudin, N. A. I., Saidi, N. B., & Yusof, M. T. (2021). Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms, 9(4), 682. https://doi.org/10.3390/microorganisms9040682
Niazi, P. (2024). Isolation and Characterization of a (Surfactin-Like Molecule) Produced by Bacillus subtilis: Antagonistic Impact on Root-Knot Nematodes. Scientific Research Communications, 4(2). https://doi.org/10.52460/src.2024.010
Nikoo, F. S., Sahebani, N., Aminian, H., Mokhtarnejad, L., & Ghaderi, R. (2014). Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 54(4), 383-389. https://doi.org/10.2478/jppr-2014-0057
Olabiyi, T. I., Afolabi, L. O., Gbadeyan, T. E., & Airaodion, E. O. (2024). Bio-Efficacy of Bacillus Species in the Management of Root-Knot Nematode Pest of Pepper. Asian Journal of Plant Pathology, 18(1), 29-38. https://doi.org/10.3923/ajpp.2024.29.38
Pan, L., & Cai, B. (2023). Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms, 11(12), 2904. https://doi.org/10.3390/microorganisms11122904
Pandiyan, A., Sarsan, S., Guda Sri Durga, G., & Ravikumar, H. (2024). Chapter 22—Biofertilizers and biopesticides as microbial inoculants in integrated pest management for sustainable agriculture. En R. Pratap Singh, G. Manchanda, S. Sarsan, A. Kumar, & H. Panosyan (Eds.), Microbial Essentialism (pp. 485-518). Academic Press. https://doi.org/10.1016/B978-0-443-13932-1.00010-6
Pang, F., Li, Q., Solanki, M. K., Wang, Z., Xing, Y.-X., & Dong, D.-F. (2024). Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1383813
Panpatte, D. G., Shelat, H. N., Jhala, Y. K., & Vyas, R. V. (2021). Fortified bacterial consortium – A novel approach to control root knot nematode in cucumber (cucumis sativum). Biological Control, 155, 104528. https://doi.org/10.1016/j.biocontrol.2020.104528
Parewa, H. P., Joshi, N., Meena, V. S., Joshi, S., Choudhary, A., Ram, M., Meena, S. C., & Jain, L. K. (2021). Chapter 9—Role of biofertilizers and biopesticides in organic farming. En V. S. Meena, S. K. Meena, A. Rakshit, J. Stanley, & C. Srinivasarao (Eds.), Advances in Organic Farming (pp. 133-159). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822358-1.00009-2
Pires, D., Vicente, C. S. L., Menéndez, E., Faria, J. M. S., Rusinque, L., Camacho, M. J., & Inácio, M. L. (2022). The Fight against Plant-Parasitic Nematodes: Current Status of Bacterial and Fungal Biocontrol Agents. Pathogens, 11(10). https://doi.org/10.3390/pathogens11101178
Pradhan, N., Singh, S., Saxena, G., Pradhan, N., Koul, M., Kharkwal, A. C., & Sayyed, R. (2025). A review on microbe–mineral transformations and their impact on plant growth. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2025.1549022
Proença, D. N., Heine, T., Senges, C. H. R., Bandow, J. E., Morais, P. V., & Tischler, D. (2019). Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Frontiers in Microbiology, 10, 2166. https://doi.org/10.3389/fmicb.2019.02166
Puissant, J., Villenave, C., Chauvin, C., Plassard, C., Blanchart, E., & Trap, J. (2021). Quantification of the global impact of agricultural practices on soil nematodes: A meta-analysis. Soil Biology and Biochemistry, 161, 108383. https://doi.org/10.1016/j.soilbio.2021.108383
Punia, A., Dehal, L., & Chauhan, N. S. (2023). Evidence of the Toxic Potentials of Agrochemicals on Human Health and Biodiversity. En M. C. Ogwu & S. Chibueze Izah (Eds.), One Health Implications of Agrochemicals and their Sustainable Alternatives (pp. 105-135). Springer Nature. https://doi.org/10.1007/978-981-99-3439-3_4
Quevedo, A., Magdama, F., Castro, J., & Vera-Morales, M. (2022). Interacciones ecológicas de los hongos nematófagos y su potencial uso en cultivos tropicales. Scientia Agropecuaria, 13(1), 97-108. https://doi.org/10.17268/sci.agropecu.2022.009
Radwan, W. H., Abdelhafez, A. A. M., Mahgoub, A. E., & Zayed, M. S. (2024). Streptomyces avermitilis MICNEMA2022: A new biorational strain for producing abamectin as an integrated nematode management agent. BMC Microbiology, 24(1), 329. https://doi.org/10.1186/s12866-024-03466-3
Rafique, M., Naveed, M., Mumtaz, M. Z., Niaz, A., Alamri, S., et al. (2024). Unlocking the potential of biofilm-forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.). Scientific Reports, 14(1), 15546. https://doi.org/10.1038/s41598-024-66562-4
Ramalakshmi, A., Sharmila, R., Iniyakumar, M., & Gomathi, V. (2020). Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egyptian Journal of Biological Pest Control, 30(1), 90. https://doi.org/10.1186/s41938-020-00293-2
Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68. https://doi.org/10.1007/s42729-020-00342-7
Rawat, P., Shankhdhar, D., & Shankhdhar, S. C. (2020). Plant Growth-Promoting Rhizobacteria: A Booster for Ameliorating Soil Health and Agriculture Production. En B. Giri & A. Varma (Eds.), Soil Health (pp. 47-68). Springer International Publishing. https://doi.org/10.1007/978-3-030-44364-1_3
Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., et al (2021). The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences of the United States of America, 118(23). https://doi.org/10.1073/pnas.2022239118
Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4), 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
Saffeullah, P., Nabi, N., Liaqat, S., Anjum, N. A., Siddiqi, T. O., & Umar, S. (2021). Organic Agriculture: Principles, Current Status, and Significance. En K. R. Hakeem, G. H. Dar, M. A. Mehmood, & R. A. Bhat (Eds.), Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health (pp. 17-37). Springer International Publishing. https://doi.org/10.1007/978-3-030-48771-3_2
Sagar, L., Singh, S., Sharma, A., Maitra, S., Attri, M., Sahoo, R. K., Ghasil, B. P., Shankar, T., Gaikwad, D. J., Sairam, M., Sahoo, U., Hossain, A., & Roy, S. (2023). Role of Soil Microbes against Abiotic Stresses Induced Oxidative Stresses in Plants. En P. Mathur, R. Kapoor, & S. Roy (Eds.), Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate (pp. 149-177). Springer Nature. https://doi.org/10.1007/978-981-99-0030-5_7
Saharan, B., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res, 21, 1-30.
Said, M. (2023). An Overview of Impact of Agrochemicals on Human Health and Natural Environment. Scientific Research Communications, 3(2). https://doi.org/10.52460/src.2023.009
Santoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, M. del C., Peña-Cabriales, J. J., & Farías-Rodríguez, R. (2010). Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens ZUM80 hacia hongos fitopatógenos. Terra Latinoamericana, 28(1), 53-60.
Seenivasagan, R., & Babalola, O. O. (2021). Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. Biology, 10(11). https://doi.org/10.3390/biology10111111
Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16134
Sharma, M., Saleh, D., Charron, J.-B., & Jabaji, S. (2020). A Crosstalk Between Brachypodium Root Exudates, Organic Acids, and Bacillus velezensis B26, a Growth Promoting Bacterium. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.575578
Sharma, S., Sharma, S., Panneerselvam, S., Kamaraj, A., Selvaraj, G., & Kumar, P. (2024). Microbial Biofertilizers for Soil Health. En R. K. Bhatia & A. Walia (Eds.), Advancements in Microbial Biotechnology for Soil Health (pp. 119-147). Springer Nature. https://doi.org/10.1007/978-981-99-9482-3_7
Shrivastava, M., Srivastava, P. C., & D’Souza, S. F. (2018). Phosphate-Solubilizing Microbes: Diversity and Phosphates Solubilization Mechanism. En V. S. Meena (Ed.), Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement (pp. 137-165). Springer. https://doi.org/10.1007/978-981-13-0044-8_5
Siddiqui, Z. A., Iqbal, A., & Mahmood, I. (2001). Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology, 16(2), 179-185. https://doi.org/10.1016/S0929-1393(00)00083-4
Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture, 13(2), Article 2. https://doi.org/10.3390/agriculture13020462
Singh, R. P., & Jha, P. N. (2016). The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.). PLOS ONE, 11(6), e0155026. https://doi.org/10.1371/journal.pone.0155026
Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: A Threat to Sustainability of Agriculture. Procedia Environmental Sciences, 29, 215-216. https://doi.org/10.1016/j.proenv.2015.07.270
Song, C., Wang, W., Gan, Y., Wang, L., Chang, X., Wang, Y., & Yang, W. (2022). Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercropping systems. Journal of the Science of Food and Agriculture, 102(4), 1430-1442. https://doi.org/10.1002/jsfa.11477
Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2020). From Isolation of Phosphate Solubilizing Microbes to Their Formulation and Use as Biofertilizers: Status and Needs. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00425
Stucky, T., Hochstrasser, M., Meyer, S., Segessemann, T., Ruthes, A. C., Ahrens, C. H., Pelludat, C., & Dahlin, P. (2023). A Novel Robust Screening Assay Identifies Pseudomonas Strains as Reliable Antagonists of the Root-Knot Nematode Meloidogyne incognita. Microorganisms, 11(8), 2011. https://doi.org/10.3390/microorganisms11082011
Suleimanova, A., Bulmakova, D., Sokolnikova, L., Egorova, E., Itkina, D., Kuzminova, O., Gizatullina, A., & Sharipova, M. (2023). Phosphate Solubilization and Plant Growth Promotion by Pantoea brenneri Soil Isolates. Microorganisms, 11(5), 1136. https://doi.org/10.3390/microorganisms11051136
Sun, X., Zhang, R., Ding, M., Liu, Y., & Li, L. (2021). Biocontrol of the root-knot nematode Meloidogyne incognita by a nematicidal bacterium Pseudomonas simiae MB751 with cyclic dipeptide. Pest Management Science, 77(10), 4365-4374. https://doi.org/10.1002/ps.6470
Sun, Y., Guo, Y., Pei, Y., Chen, Y., Feng, T., & Long, H. (2024). Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper. Agriculture, 14(11), 1920. https://doi.org/10.3390/agriculture14111920
Susič, N., Janežič, S., Rupnik, M., & Stare, B. G. (2020). Whole Genome Sequencing and Comparative Genomics of Two Nematicidal Bacillus Strains Reveals a Wide Range of Possible Virulence Factors. G3: Genes|Genomes|Genetics, 10(3), 881. https://doi.org/10.1534/g3.119.400716
Timofeeva, A., Galyamova, M., & Sedykh, S. (2022). Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants, 11(16), 2119. https://doi.org/10.3390/plants11162119
Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants, 11(22), 3065. https://doi.org/10.3390/plants11223065
Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074
Timper, P., Liu, C., Davis, R. F., & Wu, T. (2016). Influence of crop production practices on Pasteuria penetrans and suppression of Meloidogyne incognita. Biological Control, 99, 64-71. https://doi.org/10.1016/j.biocontrol.2016.04.013
Udpuay, S., Ullah, H., Himanshu, S. K., Tisarum, R., Praseartkul, P., Cha-um, S., & Datta, A. (2024). Effects of microbial biofertilizer on growth, physio-biochemical traits, fruit yield, and water productivity of okra under drought stress. Biocatalysis and Agricultural Biotechnology, 58, 103125. https://doi.org/10.1016/j.bcab.2024.103125
Uzah, G. A., Ire, F. S., & Ogugbue, C. J. (2024). Isolation and molecular characterization of microorganisms with biofertilizer potential. Scientia Africana, 23(1), Article 1. https://doi.org/10.4314/sa.v23i1.15
Vasantha-Srinivasan, P., Park, K. B., Kim, K. Y., Jung, W.-J., & Han, Y. S. (2025). The role of Bacillus species in the management of plant-parasitic nematodes. Frontiers in Microbiology, Volume 15-2024. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1510036
Vera-Morales, M., Castañeda-Ruiz, R. F., Sosa, D., Arias-Vega, C., Quevedo, A., & Ratti, M. F. (2024). Compuestos bioactivos de bacterias y hongos en el control de nematodos fitopatógenos: Mecanismos de acción, interacciones y aplicaciones. Scientia Agropecuaria, 15(1), Article 1. https://doi.org/10.17268/sci.agropecu.2024.011
Vera-Morales, M., López Medina, S. E., Naranjo-Morán, J., Quevedo, A., & Ratti, M. F. (2023). Nematophagous Fungi: A Review of Their Phosphorus Solubilization Potential. Microorganisms, 11(1), 137. https://doi.org/10.3390/microorganisms11010137
Wang, B., Chen, C., Xiao, Y.-M., Chen, K.-Y., Wang, J., Zhao, S., Liu, N., Li, J.-N., & Zhou, G.-Y. (2024). Trophic relationships between protists and bacteria and fungi drive the biogeography of rhizosphere soil microbial community and impact plant physiological and ecological functions. Microbiological Research, 280, 127603. https://doi.org/10.1016/j.micres.2024.127603
Wang, Y., & Lambers, H. (2020). Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives. Plant and Soil, 447(1), 135-156. https://doi.org/10.1007/s11104-019-03972-8
Willer, H., Trávníček, J., & Schlatter, B. (2024). The World of Organic Agriculture. Statistics and Emerging Trends 2024. FiBL and IFAOM. https://orgprints.org/id/eprint/52272/1/1747-organic-world-2024_light.pdf
Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., McInroy, J. A., & Lawrence, G. W. (2017). Biological Control of Meloidogyne incognita by Spore-forming Plant Growth-promoting Rhizobacteria on Cotton. Plant Disease, 101(5), 774-784. https://doi.org/10.1094/PDIS-09-16-1369-RE
Xie, B., Wei, X., Wan, C., Zhao, W., Song, R., Xin, S., & Song, K. (2024). Exploring the Biological Pathways of Siderophores and Their Multidisciplinary Applications: A Comprehensive Review. Molecules, 29(10), 2318. https://doi.org/10.3390/molecules29102318
Xing, Y., Wang, X., & Mustafa, A. (2025). Exploring the link between soil health and crop productivity. Ecotoxicology and Environmental Safety, 289, 117703. https://doi.org/10.1016/j.ecoenv.2025.117703
Xiong, J., Zhou, Q., Luo, H., Xia, L., Li, L., Sun, M., & Yu, Z. (2015). Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 31(4), 661-667. https://doi.org/10.1007/s11274-015-1820-7
Yadav, A. N., Kumar, R., Kumar, S., Kumar, V., Sugitha, T. C. K., Singh, B., Chauahan, V. S., Dhaliwal, H. S., & Saxena, A. K. (2017). Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. Journal of Applied Biology & Biotechnology, 5(6), 45-45. https://doi.org/10.7324/JABB.2017.50607
Yadav, S. P., Sharma, C., Pathak, P., Kanaujia, A., Saxena, M. J., & Kalra, A. (2025). Management of phyto-parasitic nematodes using bacteria and fungi and their consortia as biocontrol agents. Environmental Science: Advances, 4(3), 335-354. https://doi.org/10.1039/D4VA00216D
Ye, S., Yan, R., Li, X., Lin, Y., Yang, Z., Ma, Y., & Ding, Z. (2022). Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1025727
Zboralski, A., & Filion, M. (2020). Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Computational and Structural Biotechnology Journal, 18, 3539-3554. https://doi.org/10.1016/j.csbj.2020.11.025
Zhu, L., Huang, J., Lu, X., & Zhou, C. (2022). Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.952397
Zoubi, B., Hijri, M., Mokrini, F., Housseini, A. I., & Qaddoury, A. (2025). Nematicidal and plant growth-promoting rhizobacteria: A sustainable strategy for controlling Tylenchulus semipenetrans and enhancing citrus growth. International Microbiology: The Official Journal of the Spanish Society for Microbiology. https://doi.org/10.1007/s10123-025-00652-9
Zuluaga, M. Y. A., de Oliveira, A. L. M., Valentinuzzi, F., Jayme, N. S., Monterisi, S., Fattorini, R., Cesco, S., & Pii, Y. (2023). An insight into the role of the organic acids produced by Enterobacter sp. Strain 15S in solubilizing tricalcium phosphate: In situ study on cucumber. BMC Microbiology, 23(1), 184. https://doi.org/10.1186/s12866-023-02918-6
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Scientia Agropecuaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).

