Compensación cinética y termodinámica del pardeamiento no enzimático de zumos clarificados de limón
DOI:
https://doi.org/10.17268/sci.agropecu.2024.020Palavras-chave:
compensación cinética, compensación termodinámica, pardeamiento no enzimático, constantes cinéticas, temperatura isocinética, temperatura de isoequilibrioResumo
En este artículo se presenta un estudio sobre la compensación cinética y termodinámica para evaluar las cinéticas de pardeamiento no enzimático de zumos clarificados de limón. En un trabajo anterior se presentaron las constantes cinéticas de pardeamiento utilizando la evolución de la absorbancia a 420 nm (A420) y luminosidad (L*) para distintos contenidos en sólidos solubles (64,6; 50; 35; 20 y 10 ºBrix) y diferentes temperaturas de trabajo (70, 80, 90 y 95 ºC). Los parámetros de la ecuación de Arrhenius se obtuvieron al ajustar la variación de las constantes cinéticas con la temperatura. La variación de lnK0 con Ea sigue una tendencia lineal, por lo que existe una compensación cinética, con valores de la temperatura isocinética de 126,6ºC y 149,7ºC para A420 y L*, respectivamente. Las constantes de equilibrio del estado de transición se determinaron utilizando la ecuación de Eyring para cada contenido en sólidos solubles y cada temperatura. Las constantes de equilibrio se ajustaron a la ecuación de Van't Hoff y el conjunto de los pares de valores estimados para la entalpía de activación y la entropía de activación siguieron una línea recta lo que da lugar a la compensación termodinámica, con unas temperaturas de isoequilibrio de 112,8 ºC y 136,3 ºC para la absorbancia a A420 y L*, respectivamente. Se concluyó que el mecanismo de pardeamiento es el mismo para los intervalos de contenido en sólidos solubles y temperatura estudiados. Dado que todas las temperaturas isocinéticas y de isoequilibrio fueron superiores a los valores de las temperaturas de trabajo, también se concluyó que el control fue entálpico para todos los casos. Para evitar el deterioro de estos zumos se aconseja intervenir en la temperatura de trabajo, intentando que el tratamiento térmico se lleve a cabo a la menor temperatura posible.
Referências
Aguilar, K., Garvín, A., Azuara, E., & Ibarz, A. (2016). Rate-Controlling Mechanisms in the Photo-degradation of 5-Hydroxymethylfurfural. Food Bioprocess Technology, 9, 1399-1407. https://doi.org/10.1007/s11947-016-1729-7
Beveridge, T., & Harrison, J.E. (1984). Nonenzymatic browning in pear juice concentrate at elevated temperatures, Journal Food Science, 49, 1335-1340. https://doi.org/10.1111/j.1365-2621.1984.tb14984.x
Beristain, C. I., Garcia, H. S., & Azuara, E. (1996). Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, 30, 405–415. https://doi.org/10.1016/S0260-8774(96)00011-8
Cornwell, C.J., & Wrolstad, R.E. (1981). Causes of browning in pear juice concentrate at elevated temperatures. Journal Food Science, 46, 515-518. https://doi.org/10.1111/j.1365-2621.1981.tb04899.x
Echavarría, P., Pagán, J. & Ibarz, A. (2016). Kinetics of color development in glucose/Amino Acid model systems at different temperatures. Scientia Agropecuaria, 7(1), 15-21. https://doi.org/10.17268/sci.agropecu.2016.01.02
Garvín, A., Ibarz, R., & Ibarz, A. (2017). Kinetic and thermodynamic compensation. A current and practical review for foods. Food Research International, 96, 132-153. https://doi.org/dx.doi.org/10.1016/j.foodres.2017.03.004
Garvín, A., Augusto, P. E. D, & Ibarz, A. (2019). Kinetic and thermodynamic compensation study of the hydration of faba beans (Vicia faba L.). Food Research International, 119, 390-397. https://doi.org/10.1016/j.foodres.2019.02.002
Glasstone, S. (1949). Textbook of physical chemistry. New York: Ed. D Van Nostrand Company Inc.
Hotta, M. & Koga, N. (2024). Extended kinetic approach to reversible thermal decomposition of solids: A universal description considering the effect of the gaseous product and the kinetic compensation effect. Thermochimica Acta, 733, 179699. https://doi.org/10.1016/j.tca.2024.179699
Ibarz, R., Pagán, J., Garza, S., & Ibarz, A. (2010). Pardeamiento de zumos clarificados de limón tratados a altas temperaturas. Scientia Agropecuaria, 1, 7-20. https://doi.org/10.17268/sci.agropecu.2010.01.01
Ibarz, R., Garvín, A., & Ibarz, A. (2017). Kinetic and thermodynamic study of the photochemical degradation of patulin. Food Reserach International, 99, 348-354. https://doi.org/10.1016/j.foodres.2017.05.025
Ibarz, R., Garvín, A., & Ibarz, A. (2023). Estudio cinético y termodinámico del pardeamiento no enzimático de zumos clarificados de limón. AgroScience Research, 1(1), 3-11. https://doi.org/10.17268/agrosci.2023.001
Jankovic, B., Manic, N., Popovic, M., Cvetkovic, S., Dzeletovic, Z. & Stojiljkovic, D. (2023). Kinetic and thermodynamic compensation phenomena in C3 and C4 energy crops pyrolysis: Implications on reaction mechanisms and product distributions. Industrial Crops & Products, 194, 116275. https://doi.org/ 10.1016/j.indcrop.2023.116275
Krug, R.R., Hunter, W.G., & Grieger, R.A. (1976). Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of Van’t Hoff and Arrhenius data. The Journal of Physical Chemistry, 80(21), 2335-2341. https://doi.org/10.1021/j100562a006
Liu, L., & Guo, Q. (2001). Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chemical Reviews, 201, 673–695. https://doi.org/10.1021/cr990416z
Lyon, R.E. (2023). A physical basis for kinetic compensation. J. Phys. Chem. A, 127, 2399−2406. https://doi.org/10.1021/acs.jpca.2c07715
Manayay, D., & Ibarz, A. (2010). Modelamiento de la cinética de reacciones del pardeamiento no enzimático y el comportamiento reológico, en el proceso térmico de jugos y pulpas de fruta. Scientia Agropecuaria, 1, 155-168. https://doi.org/10.17268/sci.agropecu.2010.02.06
Özilgen, M., & Bayindirli, L. (1992). Frequency factor-activation energy compensation relations for viscosity of the fruit juices. Journal of Food Engineering, 17, 143-151. https://doi.org/10.1016/0260-8774(92)90057-D
Salinas, D., Garvín, A., Ibarz, R., & Ibarz, A. (2019). Effect of apple fibre addition and temperature on the rheological properties of apple juice and compensation study. LWT-Food Science and Technology, 116, 108456. https://doi.org/10.1016/j.lwt.2019.108456
Salinas, D., Garvín, A., Ibarz, R., & Ibarz, A. (2021). Viscoelastic properties and compensation study of apple juice enriched with apple fiber. LWT-Food Science and Technology, 151, 111971. https://doi.org/10.1016/j.lwt.2021.111971
Toribio, J.L., Lozano, J.E. (1986). Heat induced Browning of clarified Apple juice at high temperatures. Journal Food Science, 51(1), 172-175. https://doi.org/10.1111/j.1365-2621.1986.tb10863.x
Waller, G.R., & Feather, M.S. (1983). Maillard Reaction in Foods and Nutrition. ACS Symposium series 215. Am. Chem. Soc. Washington
Wang, X., Wang, Y., Guo, J., Zhao, Y., Wang, X., Zhang, X., & Chen, Z. (2024). Behaviors and non‑isothermal kinetics of Chlorella pyrenoidosa fodder pyrolysis by a modified kinetic compensation effects and a parallel two‑step reaction model. Biomass Conversion and Biorefinery, 14, 5589–5600. https://doi.org/10.1007/s13399-022-02723-7
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Scientia Agropecuaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).