Integrating in situ conservation of plant genetic resources with ex situ conservation management: Involving custodian farmers, benefits and their willingness to accept compensation
DOI:
https://doi.org/10.17268/sci.agropecu.2023.038Palavras-chave:
In situ conservation, systematic conservation, custodian farmer, opportunity cost, benefit, willingness to accept, compensationResumo
Compensation for custodian farmers to provide agrobiodiversity-conservation services in their farms (in situ) is an emerging global approach because it can generate public benefits when it comes to important plant genetic resources (PGRs) for food and agriculture. This review focused on: i) the integration of in situ conservation to the PGR management involving custodian farmers in a systematic conservation approach; ii) the private benefits obtained by custodian farmers to increase their willingness to actively participate in the conservation service; and iii) the willingness to accept (WTA) compensation of the farmers in providing conservation service relative to opportunity costs. The most recent approaches suggest the integration of in situ conservation with ex situ conservation management for efficient conservation programmes, especially in relation to governance of local agrobiodiversity. Involving custodian farmers in the comprehensive genetic-improvement system appears to be an activity that increases their willingness to participate in agrobiodiversity conservation schemes. Farmers receive private benefits, which are simultaneously reflected in the provision of public benefits. Therefore, WTA compensation, which employs mechanisms in the design of payments for better agro-environmental conservation services, controls the opportunity costs. Overall, farmers seem willing to participate in any type of compensation scheme that is proposed in the different countries. Furthermore, it is possible to capture the WTA, therefore significant progress requires more studies of primary schemes, indepth analysis to capture farmers' preferences on economic, socio-cultural, and environmental factors in scheme design, and the implementation of incentive policies designed with pragmatic tools.
Referências
Ahiale, E. D., Balcombe, K., & Srinivasan, C. (2019). Determinants of Farm Households’ Willingness to Accept (WTA) Compensation for Conservation Technologies in Northern Ghana. Bio-Based and Applied Economics, 8(2), 211–234. https://doi.org/10.13128/bae-8931
Allen, E., Gaisberger, H., Brehm, J. M., Maxted, N., Thormann, I., Lupupa, T., Dulloo, M. E., & Kell, S. P. (2019). A crop wild relative inventory for Southern Africa: A first step in linking conservation and use of valuable wild populations for enhancing food security. Plant Genetic Resources, 17(2), 128– 139. https://doi.org/10.1017/S1479262118000515
Amigues, J.-P., Boulatoff, C., Desaigues, B., Gauthier, C., & Keith, J. E. (2002). The benefits and costs of riparian analysis habitat preservation: a willingness to accept/willingness to pay contingent valuation approach. Ecological Economics, 43(1), 17–31.
Aubry, S. (2023). Genebanking plant genetic resources in the postgenomic era International Treaty on PGRFA. Agriculture and Human Values, 40(3), 961–971. https://doi.org/10.1007/s10460-023-10417-7
Bedoya-Perales, N. S., Pumi, G., Mujica, A., Talamini, E., & Domingos Padula, A. (2018). Quinoa expansion in Peru and its implications for land use management. Sustainability, 10(2), 532. https://doi.org///doi.org/10.3390/su10020532
Bellon, M. R., Dulloo, E., Sardos, J., Thormann, I., & Burdon, J. J. (2017). In situ conservation—harnessing natural and human‐ derived evolutionary forces to ensure future crop adaptation. Evolutionary Applications, 10(10), 965–977. https://doi.org///doi.org/10.1111/eva.12521
Bellon, M. R., Gotor, E., & Caracciolo, F. (2015a). Assessing the effectiveness of projects supporting on-farm conservation of native crops: evidence from the high Andes of South America. World Development, 70, 162–176. https://doi.org///doi.org/10.1016/j.worlddev.2015.01.014
Bellon, M. R., Gotor, E., & Caracciolo, F. (2015b). Conserving landraces and improving livelihoods: how to assess the success of on-farm conservation projects? International Journal of Agricultural Sustainability, 13(2), 167–182. https://doi.org///doi.org/10.1080/14735903.2014.986363
Börner, J., Baylis, K., Corbera, E., Ezzine-de-Blas, D., Honey-Rosés, J., Persson, U. M., & Wunder, S. (2017). The effectiveness of payments for environmental services. World Development, 96, 359–374. https://doi.org/10.1016/j.worlddev.2017.03.020
Brush, S. B. (2000). Genes in the field: on-farm conservation of crop diversity. IDRC. Buckley, C., Hynes, S., & Mechan, S. (2012). Supply of an ecosystem service—Farmers’ willingness to adopt riparian buffer zones in agricultural catchments. Environmental Science & Policy, 24, 101–109. https://doi.org/10.1016/j.envsci.2012.07.022
Carson, R. T. (2000). Contingent valuation: a user’s guide. ACS Publications. https://doi.org/10.1021/es990728j
Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an evolved concept of landrace. Frontiers in Plant Science, 8, 145. https://doi.org/10.3389/fpls.2017.00145
Castillo, C. P., Jacobs-Crisioni, C., Diogo, V., & Lavalle, C. (2021). Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: An application for the EU. Environmental Modelling & Software, 136, 104946. https://doi.org/10.1016/j.envsoft.2020.104946
CBD. (2013). Quick guides to the Aichi Biodiversity Targets. https://www.cbd.int/doc/strategic-plan/targets/compilationquick-guide-en.pdf
Christensen, T., Pedersen, A. B., Nielsen, H. O., Mørkbak, M. R., Hasler, B., & Denver, S. (2011). Determinants of farmers’ willingness to participate in subsidy schemes for pesticidefree buffer zones—A choice experiment study. Ecological Economics, 70(8), 1558–1564. https://doi.org/10.1016/j.ecolecon.2011.03.021
Chu, X., Zhan, J., Wang, C., Hameeda, S., & Wang, X. (2020). Households’ Willingness to Accept Improved Ecosystem Services and Influencing Factors: Application of Contingent Valuation Method in Bashang Plateau, Hebei Province, China. Journal of Environmental Management, 255, 109925. https://doi.org/10.1016/j.jenvman.2019.109925
Da Motta, R. S., & Ortiz, R. A. (2018). Costs and perceptions conditioning willingness to accept payments for ecosystem services in a Brazilian case. Ecological Economics, 147, 333– 342. https://doi.org/10.1016/j.ecolecon.2018.01.032
Dempewolf, H., & Krishnan, S. (2023). Our shared global responsibility : Safeguarding crop diversity for future generations. 120(14), 1–8.
Drucker, A. G., Mponya, N. K., Grazioli, F., Maxted, N., Brehm, J. M., & Dulloo, E. (2023). Community-Level Incentive Mechanisms for the Conservation of Crop Wild Relatives : A Malawi Case Study. 1–13.
Drucker, A. G., & Ramirez, M. (2020). Payments for agrobiodiversity conservation services: An overview of Latin American experiences, lessons learned and upscaling challenges. Land Use Policy, 99, 104810. https://doi.org///doi.org/10.1016/j.landusepol.2020.104810
Dulloo, M. . (2021). Plant genetic resources: A review of current research and future needs. In Plant genetic resources (1st ed.). Burleigh Dodds Science Publishing. https://doi.org/10.1201/9781003180623
Ebert, A. W. (2020). The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants, 9(6), 736. https://doi.org/10.3390/plants9060736
Ebert, A. W., Engels, J. M. M., Schafleitner, R., Hintum, T. Van, & Mwila, G. (2023). Critical Review of the Increasing Complexity of Access and Benefit-Sharing Policies of Genetic Resources for Genebank Curators and Plant Breeders – A Public and Private Sector Perspective. 1–21.
Egli, L., Meyer, C., Scherber, C., Kreft, H., & Tscharntke, T. (2018). Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Global Change Biology, 24(5), 2212–2228. https://doi.org/10.1111/gcb.14076
Engels, J. M. M., & Ebert, A. W. (2021a). A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. I. History of the Development of the Global System in the Context of the Political/Legal Framework and Its Major Conservation Components. Plants, 10(8), 1557. https://doi.org/10.3390/plants10091904
Engels, J. M. M., & Ebert, A. W. (2021b). A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. II. Strengths and Weaknesses of the Current System and Recommendations for Its Improvement. Plants, 10(9), 1904. https://doi.org/10.3390/plants10091904
Fadda, C., Mengistu, D. K., Kidane, Y. G., Dell’Acqua, M., Pè, M. E., & Van Etten, J. (2020). Integrating conventional and participatory crop improvement for smallholder agriculture using the Seeds for Needs Approach: a review. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.559515
FAO. (2019). Voluntary Guidelines for the Conservation and Sustainable Use of Farmers’. http://www.fao.org/3/ca5601en/CA5601EN.pdf Farooq, M., & Pisante, M. (2019). Innovations in sustainable agriculture. Springer. https://doi.org/10.1007/978-3-030- 23169-9_1
Feng, D., Liang, L., Wu, W., Li, C., Wang, L., Li, L., & Zhao, G. (2018). Factors influencing willingness to accept in the paddy landto-dry land program based on contingent value method. Journal of Cleaner Production, 183, 392–402. https://doi.org/10.1016/j.jclepro.2018.02.142
Gajanana, T. M., Dinesh, M. R., Rajan, S., Vasudeva, R., Kumar, S. S., Lamers, H. A. H., Parthasarathy, V. A., Sthapit, B. R., & Ramanatha, R. V. (2015). Motivation for on-farm conservation of mango (Mangifera indica) diversity in India–A case study. Indian Journal of Plant Genetic Resources. https://doi.org/10.5958/0976-1926.2015.00001.7
Geussens, K., Van den Broeck, G., Vanderhaegen, K., Verbist, B., & Maertens, M. (2019). Farmers’ perspectives on payments for ecosystem services in Uganda. Land Use Policy, 84, 316–327. https://doi.org/10.1016/j.landusepol.2019.03.020
Giannoccaro, G., de Gennaro, B. C., De Meo, E., & Prosperi, M. (2017). Assessing farmers’ willingness to supply biomass as energy feedstock: cereal straw in Apulia (Italy). Energy Economics, 61, 179–185. https://doi.org/10.1016/j.eneco.2016.11.009
Gotor, E., Bellon, A., Polar, V., & Caracciolo, F. (2017). Assessing the benefits of Andean crop diversity on farmers’ livelihood: Insights from a development programme in Bolivia and Peru. Journal of International Development, 29(7), 877–898. https://doi.org///doi.org/10.1002/jid.3270
Graddy, T. G. (2014). Situating in situ: a critical geography of agricultural biodiversity conservation in the Peruvian Andes and beyond. Antipode, 46(2), 426–454. https://doi.org///doi.org/10.1111/anti.12045
Guzzon, F., Arandia Rios, L. W., Caviedes Cepeda, G. M., Céspedes Polo, M., Chavez Cabrera, A., Muriel Figueroa, J., Medina Hoyos, A. E., Jara Calvo, T. W., Molnar, T. L., & Narro León, L. A. (2021). Conservation and use of Latin American maize diversity: Pillar of nutrition security and cultural heritage of humanity. Agronomy, 11(1), 172. https://doi.org/10.3390/agronomy11010172
Haile, K. K., Tirivayi, N., & Tesfaye, W. (2019). Farmers’ willingness to accept payments for ecosystem services on agricultural land: The case of climate-smart agroforestry in Ethiopia. Ecosystem Services, 39, 100964. https://doi.org/10.1016/j.ecoser.2019.100964
Hanley, N., & Perrings, C. (2019). The economic value of biodiversity. Annual Review of Resource Economics, 11, 355– 375. https://doi.org///doi.org/10.1146/annurev-resource100518-093946
Hasler, B., Czajkowski, M., Elofsson, K., Hansen, L. B., Konrad, M. T., Nielsen, H. Ø., Niskanen, O., Nommann, T., Pedersen, A. B., & Peterson, K. (2019). Farmers’ preferences for nutrient and climate-related agri-environmental schemes: A cross-country comparison. Ambio, 48(11), 1290–1303. https://doi.org/10.1007/s13280-019-01242-6
He, K., Zhang, J., Zeng, Y., & Zhang, L. (2016). Households’ willingness to accept compensation for agricultural waste recycling: taking biogas production from livestock manure waste in Hubei, PR China as an example. Journal of Cleaner Production, 131, 410–420. https://doi.org/10.1016/j.jclepro.2016.05.009
Huang, X., Cheng, L., Chien, H., Jiang, H., Yang, X., & Yin, C. (2019). Sustainability of returning wheat straw to field in Hebei, Shandong and Jiangsu Provinces: A contingent valuation method. Journal of Cleaner Production, 213, 1290–1298. https://doi.org/10.1016/j.jclepro.2018.12.242
Isbell, C., Tobin, D., & Reynolds, T. (2021). Motivations for maintaining crop diversity: Evidence from Vermont’s seed systems. Ecological Economics, 189, 107138. https://doi.org/10.1016/j.ecolecon.2021.107138
Jarvis, D. I., Brown, A. H. D., Cuong, P. H., Collado-Panduro, L., Latournerie-Moreno, L., Gyawali, S., Tanto, T., Sawadogo, M., Mar, I., & Sadiki, M. (2008). A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proceedings of the National Academy of Sciences, 105(14), 5326–5331. https://doi.org///doi.org/10.1073/pnas.0800607105
Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Sciences, 30(1–2), 125–176. https://doi.org///doi.org/10.1080/07352689.2011.554358
Jarvis, D., Myer, L., Klemick, H., Guarino, L., Smale, M., Brown, A. H. D., Sadiki, M., Sthapit, B., & Hodgkin, T. (2006). Guía de capacitación para la conservación in situ en fincas. In IPGRI, Roma, Italia.
Jiang, W., Yan, T., & Chen, B. (2021). Impact of media channels and social interactions on the adoption of straw return by Chinese farmers. Science of The Total Environment, 756, 144078. https://doi.org/10.1016/j.scitotenv.2020.144078
Joshi, B. K., Ghimire, K. H., Gurung, R., Pudasaini, N., Pant, S., Paneru, P., Gauchan, D., Mishra, K. K., & Jarvis, D. (2020a). Onfarm agrobiodiversity measurement and conservation. NAGRC; LI-BIRD; Alliance of Bioversity International and CIAT. //hdl.handle.net/10568/109626
Joshi, B. K., Gorkhali, N. A., Pradhan, N., Ghimire, K. H., Gotame, T. P., Prenil, K. C., Mainali, R. P., Karkee, A., & Paneru, R. B. (2020b). Agrobiodiversity and its Conservation in Nepal. Journal of Nepal Agricultural Research Council, 6, 14–33. https://doi.org///doi.org/10.3126/jnarc.v6i0.28111
Juvančič, L., Slabe-Erker, R., Ogorevc, M., Drucker, A. G., Erjavec, E., & Bojkovski, D. (2021). Payments for Conservation of Animal Genetic Resources in Agriculture: One Size Fits All? Animals, 11(3), 846. https://doi.org/10.3390/ani11030846
Kanchanaroek, Y., & Aslam, U. (2018). Policy schemes for the transition to sustainable agriculture—Farmer preferences and spatial heterogeneity in northern Thailand. Land Use Policy, 78, 227–235. https://doi.org/10.1016/j.landusepol.2018.05.026
Khoury, C. K., Castañeda-Alvarez, N. P., Achicanoy, H. A., Sosa, C. C., Bernau, V., Kassa, M. T., Norton, S. L., van der Maesen, L. J. G., Upadhyaya, H. D., & Ramírez-Villegas, J. (2015). Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 184, 259–270. https://doi.org/10.1016/j.biocon.2015.01.032
Kissell, R. L. (2021). Chapter 3 - Transaction Costs (R. L. B. T.-A. T. M. (Second E. Kissell (ed.); 2nd ed., pp. 57–97). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12- 815630-8.00003-X
Kochupillai, M., Gallersdörfer, U., Köninger, J., & Beck, R. (2021). Incentivizing research & innovation with agrobiodiversity conserved in situ: Possibilities and limitations of a blockchainbased solution. Journal of Cleaner Production, 309, 127155. https://doi.org/10.1016/j.jclepro.2021.127155
Krishna, V. V, Drucker, A. G., Pascual, U., Raghu, P. T., & King, E. D. I. O. (2013). Estimating compensation payments for on-farm conservation of agricultural biodiversity in developing countries. Ecological Economics, 87, 110–123. https://doi.org///doi.org/10.1016/j.ecolecon.2012.12.013
Kumar, N. A., Nambi, V. A., Rani, M. G., King, E. D. I. O., Chaudhury, S. S., & Mishra, S. (2015). Community agro biodiversity conservation continuum: an integrated approach to achieve food and nutrition security. Current Science, 474–487. https://www.jstor.org/stable/24906102?seq=1
Larochelle, C., Alwang, J., Travis, E., Barrera, V. H., & Dominguez Andrade, J. M. (2019). Did you really get the message? Using text reminders to stimulate adoption of agricultural technologies. The Journal of Development Studies, 55(4), 548– 564.
Latacz-Lohmann, U., & Breustedt, G. (2019). Using choice experiments to improve the design of agri-environmental schemes. European Review of Agricultural Economics, 46(3), 495–528. https://doi.org/10.1093/erae/jbz020
Leroy, G., Carroll, E. L., Bruford, M. W., DeWoody, J. A., Strand, A., Waits, L., & Wang, J. (2018). Next‐generation metrics for monitoring genetic erosion within populations of conservation concern. Evolutionary Applications, 11(7), 1066– 1083. https://doi.org/10.1111/eva.12564
Li, F., Ren, J., Wimmer, S., Yin, C., Li, Z., & Xu, C. (2020). Incentive mechanism for promoting farmers to plant green manure in China. Journal of Cleaner Production, 267, 122197. https://doi.org/10.1016/j.jclepro.2020.122197
Li, G., Shi, M., & Zhou, D. (2021). How much will farmers be compensated for water reallocation from agricultural water to the local ecological sector on the edge of an oasis in the Heihe River Basin? Agricultural Water Management, 249, 106801. https://doi.org/10.1016/j.agwat.2021.106801
Li, H., Yang, X., Zhang, X., Liu, Y., & Zhang, K. (2018). Estimation of rural households’ willingness to accept two PES programs and their service valuation in the Miyun reservoir catchment, China. Sustainability, 10(1), 170. https://doi.org/0.3390/su10010170
Louafi, S., Thomas, M., Berthet, E. T., Pélissier, F., Vaing, K., Jankowski, F., Bazile, D., Pham, J.-L., & Leclercq, M. (2021). Crop Diversity Management System Commons: Revisiting the Role of Genebanks in the Network of Crop Diversity Actors. Agronomy, 11(9), 1893. https://doi.org/10.3390/agronomy11091893
Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). El cambio climático en los andes y su impacto en la agricultura: una revisión sistemática. Scientia Agropecuaria, 12(1), 101–108. https://doi.org/10.17268/sci.agropecu.2021.012
Madden, C. (2019). Criar y Dejarse Criar: Trans-Situ Crop Conservation and Indigenous Landscape Management through a Network of Global Food Neighborhoods. //digitalcollections.sit.edu/capstones/3195
Maxted, N, Ford-Lloyd, B. V, & Hawkes, J. G. (2000). Complementary conservation strategies. In Plant genetic conservation (pp. 15– 39). Springer. https://doi.org/10.1007/978-94-009-1437-7_2
Maxted, N., & Brehm, J. M. (2022). Maximizing the crop wild relative resources available to plant breeders for crop improvement.
Maxted, N., Dulloo, M. E., & Ford-Lloyd, B. V. (2016). Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement. CABI.
McGurk, E., Hynes, S., & Thorne, F. (2020). Participation in agrienvironmental schemes: A contingent valuation study of farmers in Ireland. Journal of Environmental Management, 262, 110243. https://doi.org/10.1016/j.jenvman.2020.110243
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1), 1–10. https://doi.org/10.1186/s12913-014- 0579-0
Midler, E., Pascual, U., Drucker, A. G., Narloch, U., & Soto, J. L. (2015). Unraveling the effects of payments for ecosystem services on motivations for collective action. Ecological Economics, 120, 394–405. https://doi.org/10.1016/j.ecolecon.2015.04.006
Moukam, C. Y. (2021). Supplying Environmental Services through Sustainable Agriculture in Rural Cameroon: An Estimation of Farmers’ Willingness to Accept in Barombi Mbo. International Journal of Innovation and Applied Studies, 33(1), 222–233. //www.ijias.issr-journals.org/abstract.php?article=IJIAS-21- 130-02
Naidoo, R., Balmford, A., Ferraro, P. J., Polasky, S., Ricketts, T. H., & Rouget, M. (2006). Integrating economic costs into conservation planning. Trends in Ecology & Evolution, 21(12), 681–687. https://doi.org/10.1016/j.tree.2006.10.003
Narloch, U., Drucker, A. G., & Pascual, U. (2011). Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecological Economics, 70(11), 1837–1845. https://doi.org///doi.org/10.1016/j.ecolecon.2011.05.018
Narloch, U., Drucker, A. G., & Pascual, U. (2017). What role for cooperation in conservation tenders? Paying farmer groups in the High Andes. Land Use Policy, 63, 659–671. https://doi.org/10.1016/j.landusepol.2015.09.017
Narloch, U. L. F., Pascual, U., & Drucker, A. G. (2011). Costeffectiveness targeting under multiple conservation goals and equity considerations in the Andes. Environmental Conservation, 417–425. https://doi.org///doi.org/10.1017/S0376892911000397
Narloch, U., Pascual, U., & Drucker, A. G. (2013). How to achieve fairness in payments for ecosystem services? Insights from agrobiodiversity conservation auctions. Land Use Policy, 35, 107–118. https://doi.org///doi.org/10.1016/j.landusepol.2013.05.002
Negri, V., Maxted, N., & Veteläinen, M. (2009). European landrace conservation: an introduction. In European Landraces: Onfarm Conservation, Management and Use. Rome IT: Bioversity International (pp. 1–22).
Niskanen, O., Tienhaara, A., Haltia, E., & Pouta, E. (2021). Farmers’ heterogeneous preferences towards results-based environmental policies. Land Use Policy, 102, 105227. https://doi.org/10.1016/j.landusepol.2020.105227
Nogué, F., Mara, K., Collonnier, C., & Casacuberta, J. M. (2016). Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Reports, 35(7), 1475– 1486. https://doi.org/10.1007/s00299-016-1993-z
Nong, Y., Yin, C., Yi, X., Ren, J., & Chien, H. (2021). Smallholder farmer preferences for diversifying farming with cover crops of sustainable farm management: A discrete choice experiment in Northwest China. Ecological Economics, 186, 107060. https://doi.org/10.1016/j.ecolecon.2021.107060
Nordhagen, S., Pascual, U., & Drucker, A. G. (2017). Feeding the household, growing the business, or just showing off? Farmers’ motivations for crop diversity choices in Papua New Guinea. Ecological Economics, 137, 99–109. https://doi.org/10.1016/j.ecolecon.2017.02.025
Nyongesa, J. M., Bett, H. K., Lagat, J. K., & Ayuya, O. I. (2016). Estimating farmers’ stated willingness to accept pay for ecosystem services: Case of Lake Naivasha watershed Payment for Ecosystem Services scheme-Kenya. Ecological Processes, 5(1), 1–15. https://doi.org/10.1186/s13717-016-0059- z
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc. https://epic.awi.de/id/eprint/37530/
Padulosi, S., & Drucker, A. (2018). Injecting Diversity to Bolster Immunity to Climate Change and Food Insecurity. Bioversity International. https://www.bioversityinternational.org/news/detail/inyectan do-diversidad-para-reforzar-la-inmunidad-al-cambioclimatico-y-a-la-inseguridad-alimentar/
Pallante, G., Drucker, A. G., & Sthapit, S. (2016). Assessing the potential for niche market development to contribute to farmers’ livelihoods and agrobiodiversity conservation: Insights from the finger millet case study in Nepal. Ecological Economics, 130, 92–105. https://doi.org///doi.org/10.1016/j.ecolecon.2016.06.017
Pascual, U., & Perrings, C. (2007). Developing incentives and economic mechanisms for in situ biodiversity conservation in agricultural landscapes. Agriculture, Ecosystems & Environment, 121(3), 256–268. https://doi.org/10.1016/j.agee.2006.12.025
Perrino, E. V, & Perrino, P. (2020). Crop wild relatives: Know how past and present to improve future research, conservation and utilization strategies, especially in Italy: A review. Genetic Resources and Crop Evolution, 67(5), 1067–1105. https://doi.org/10.1007/s10722-020-00930-7
Pilling, D., Bélanger, J., Diulgheroff, S., Koskela, J., Leroy, G., Mair, G., & Hoffmann, I. (2020). Global status of genetic resources for food and agriculture: challenges and research needs. Genetic Resources, 1(1), 4–16.
Prasada, I. Y., & Masyhuri, M. (2019). Farmers’ Willingness to Accept a Compensation to Protect Agricultural Land Sustainability in Peri-Urban Areas of Pekalongan City. Agro Ekonomi, 30(2). https://doi.org/10.22146/ae.48869
Rajpurohit, D., & Jhang, T. (2015). In situ and ex situ conservation of plant genetic resources and traditional knowledge. In Plant Genetic Resources and Traditional Knowledge for Food Security (pp. 137–162). Springer. https://doi.org/10.1007/978- 981-10-0060-7_8
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. H. (2018). Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology, 69, 789– 815. https://doi.org/10.1146/annurev-arplant-042817-040256
Ramirez‐Villegas, J., Khoury, C. K., Achicanoy, H. A., Mendez, A. C., Diaz, M. V., Sosa, C. C., Debouck, D. G., Kehel, Z., & Guarino, L. (2020). A gap analysis modelling framework to prioritize collecting for ex situ conservation of crop landraces. Diversity and Distributions, 26(6), 730–742. https://doi.org/10.1111/ddi.13046
Rasheed, S., Venkatesh, P., Singh, D. R., Renjini, V. R., Jha, G. K., & Sharma, D. K. (2021). Ecosystem valuation and ecocompensation for conservation of traditional paddy ecosystems and varieties in Kerala, India. Ecosystem Services, 49, 101272. https://doi.org/10.1016/j.ecoser.2021.101272
Rojas, W., Flores, J., & Pinto, M. (2014). Conservación in situ de la agrobiodiversidad: la experiencia de PROINPA en comunidades circunlacustres al Lago Titicaca. Fundación PROINPA, 48–54. https://doi.org/http://www.nuscommunity.org/fileadmin/tem plates/nuscommunity.org/upload/documents/Publications/2 011-2014/2014_Rojas_Titicaca.pdf
Rometsch, S., Petitpierre, B., Boserup, J., Adrian, M., & Aubry, S. (2023). Importance of agriculture for crop wild relatives conservation in Switzerland. 46.
Saddoud Debbabi, O., Rahmani Mnasri, S., Ben Amar, F., Naceur, B., Montemurro, C., & Miazzi, M. M. (2021). Applications of Microsatellite Markers for the Characterization of Olive Genetic Resources of Tunisia. Genes, 12(2), 286. https://doi.org/10.3390/genes12020286
Salzman, J., Bennett, G., Carroll, N., Goldstein, A., & Jenkins, M. (2018). The global status and trends of Payments for Ecosystem Services. Nature Sustainability, 1(3), 136–144. https://doi.org/10.1038/s41893-018-0033-0
Sardaro, R., Faccilongo, N., Contò, F., & La Sala, P. (2021). Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area. Sustainability, 13(11), 5977. https://doi.org/10.3390/su13115977
Sardaro, R., Girone, S., Acciani, C., Bozzo, F., Petrontino, A., & Fucilli, V. (2016). Agro-biodiversity of Mediterranean crops: farmers’ preferences in support of a conservation programme for olive landraces. Biological Conservation, 201, 210–219. https://doi.org/10.1016/j.biocon.2016.06.033
Singh, S. K., Nath, V., Rajan, S., & Pandey, S. D. (2019). Surveying Mango Diversity and its Custodian Farmers in the States of Bihar and Jharkhand, India. Indian Journal of Plant Genetic Resources, 32(2), 200–206. https://doi.org/10.5958/0976- 1926.2019.00025.1
Smale, M., Bellon, M. R., Jarvis, D., & Sthapit, B. (2004). Economic concepts for designing policies to conserve crop genetic resources on farms. Genetic Resources and Crop Evolution, 51(2), 121–135. https://doi.org/10.1023/B:GRES.0000020678.82581.76 Sonnino, A. (2017). International instruments for conservation and sustainable use of plant genetic resources for food and agriculture: an historical appraisal. Diversity, 9(4), 50. https://doi.org/10.3390/d9040050
Struik, P. C., & Kuyper, T. W. (2017). Sustainable intensification in agriculture: the richer shade of green. A review. Agronomy for Sustainable Development, 37(5), 1–15. https://doi.org/10.1007/s13593-017-0445-7
Sumalan, R.-L., Ciulca, S.-I., Sumalan, R.-M., & Popescu, S. (2021). Landraces of Vegetables: The “Gene Banks” for Traditional Farmers and Future Breeding Programs. https://doi.org/10.5772/intechopen.96138
Sun, X., Liu, X., Zhao, S., & Zhu, Y. (2021). An evolutionary systematic framework to quantify short-term and long-term watershed ecological compensation standard and amount for promoting sustainability of livestock industry based on costbenefit analysis, linear programming, WTA and WTP method. Environmental Science and Pollution Research, 28(14), 18004– 18020. https://doi.org/10.1007/s11356-020-11769-x
Swaminathan, M. S. (2022). The Past, Present and Future Contributions of Farmers to the Conservation and Development of Genetic Diversity. In Managing Plant Genetic Diversity; Engels, J. M. M., Rao, V. R., Brown, A., Jackson, M. T., Eds.; CABI Publishing: New York, NY, USA, pp. 23–32.
Tao, J., & Wang, J. (2020). Farmers’ willingness to accept compensation for livestock and poultry waste resource utilization and its determinants. Chinese Journal of Population, Resources and Environment, 18(2), 144–154. https://doi.org/10.1016/j.cjpre.2021.04.019
Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin‐Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/10.1111/ele.12453
Tyack, N., Dempewolf, H., & Khoury, C. K. (2020). The potential of payment for ecosystem services for crop wild relative conservation. Plants, 9(10), 1305. https://doi.org/10.3390/plants9101305
Tyllianakis, E., & Martin-Ortega, J. (2021). Agri-environmental schemes for biodiversity and environmental protection: How were are not yet “hitting the right keys.” Land Use Policy, 109, 105620. https://doi.org/10.1016/j.landusepol.2021.105620
Villamayor-Tomas, S., Sagebiel, J., Rommel, J., & Olschewski, R. (2021). Types of collective action problems and farmers’ willingness to accept agri-environmental schemes in Switzerland. Ecosystem Services, 50, 101304. https://doi.org/10.1016/j.ecoser.2021.101304
Villamayor-Tomas, S., Thiel, A., Amblard, L., Zikos, D., & Blanco, E. (2019). Diagnosing the role of the state for local collective action: Types of action situations and policy instruments. Environmental Science & Policy, 97, 44–57. https://doi.org/10.1016/j.envsci.2019.03.009
Villanueva, A. J., Gómez-Limón, J. A., Arriaza, M., & RodríguezEntrena, M. (2015). The design of agri-environmental schemes: Farmers’ preferences in southern Spain. Land Use Policy, 46, 142–154. https://doi.org/10.1016/j.landusepol.2015.02.009
Visioni, A., Basile, B., Amri, A., & Sanchez-garcia, M. (2023). Advancing the Conservation and Utilization of Barley Genetic Resources : Insights into Germplasm Management and Breeding for Sustainable Agriculture.
Wainwright, W., Maxted, A. D., G., Brehm, B. N., Ng’uni, J. M., & Moran, D. (2019a). Estimating in situ conservation costs of Zambian crop wild relatives under alternative conservation goals. Land Use Policy, 81, 632–643. https://doi.org///doi.org/10.1016/j.landusepol.2018.11.033
Wainwright, W., Vosough Ahmadi, B., Mcvittie, A., Simm, G., & Moran, D. (2019). Prioritising support for cost effective rare breed conservation using multi-criteria decision analysis. Frontiers in Ecology and Evolution, 7, 110. https://doi.org/10.3389/fevo.2019.00110
Wang, Y., He, K., Zhang, J., & Chang, H. (2020). Environmental knowledge, risk attitude, and households’ willingness to accept compensation for the application of degradable agricultural mulch film: Evidence from rural China. Science of The Total Environment, 744, 140616. https://doi.org/10.1016/j.scitotenv.2020.140616
Wooldridge, J. M. (2015). Introductory econometrics: A modern approach (6th ed.). Cengage learning. 912 p. Wuepper, D., Heissenhuber, A., & Sauer, J. (2017). Investigating rice farmers’ preferences for an agri-environmental scheme: Is an eco-label a substitute for payments? Land Use Policy, 64, 374– 382. https://doi.org/10.1016/j.landusepol.2017.03.014
Yamota, J. R. G., & Tan-Cruz, A. (2007). 10 th National Convention on Statistics (NCS). https://doi.org/10.1.1.585.4278&rep=rep1&type
Yang, T., Siddique, K. H. M., & Liu, K. (2020). Cropping systems in agriculture and their impact on soil health-A review. Global Ecology and Conservation, e01118. https://doi.org/10.1016/j.gecco.2020.e01118
Yang, X., Cheng, L., Huang, X., Zhang, Y., Yin, C., & Lebailly, P. (2020). Incentive mechanism to promote corn stalk return sustainably in Henan, China. Science of The Total Environment, 738, 139775. https://doi.org/10.1016/j.scitotenv.2020.139775
Zair, W., Maxted, N., Brehm, J. M., & Amri, A. (2021). Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genetic Resources and Crop Evolution, 68(2), 693–709. https://doi.org/10.1007/s10722-017-0576-3
Zeven, A. C. (1998). Landraces: a review of definitions and classifications. Euphytica, 104(2), 127–139. https://doi.org/10.1023/A:1018683119237 Zimmerer, K. S. (2015). Understanding agrobiodiversity and the rise of resilience: analytic category, conceptual boundary object or meta-level transition? Resilience, 3(3), 183–198. https://doi.org/10.1080/21693293.2015.1072311
Zimmerer, K. S., & De Haan, S. (2017). Agrobiodiversity and a sustainable food future. Nature Plants, 3(4), 1–3. https://doi.org///doi.org/10.1038/nplants.2017.47
Zimmerer, K. S., de Haan, S., Jones, A. D., Creed-Kanashiro, H., Tello, M., Carrasco, M., Meza, K., Amaya, F. P., Cruz-Garcia, G. S., & Tubbeh, R. (2019). The biodiversity of food and agriculture (Agrobiodiversity) in the anthropocene: Research advances and conceptual framework. Anthropocene, 25, 100192. https://doi.org/10.1016/j.ancene.2019.100192
Zuo, A., Hou, L., & Huang, Z. (2020). How does farmers’ current usage of crop straws influence the willingness-to-accept price to sell? Energy Economics, 86, 104639. https://doi.org/10.1016/j.eneco.2019.104639
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Scientia Agropecuaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).