Influencia de la proporción agua de mar y bicarbonato en la producción de biomasa de Spirulina sp. con iluminación de diodo emisor de luz

Autores/as

  • Víctor Vasquez-Villalobos Universidad Privada Antenor Orrego, Trujillo; Universidad Nacional de Trujillo, Trujillo
  • Danny Vergaray Universidad Privada Antenor Orrego, Trujillo
  • Sandibel Suarez Universidad Privada Antenor Orrego, Trujillo
  • John Valladares Universidad Privada Antenor Orrego, Trujillo
  • Augusto Zamora Universidad Privada Antenor Orrego, Trujillo
  • Katia Gaspar Universidad Privada Antenor Orrego, Trujillo
  • Xiomara Escurra Universidad Privada Antenor Orrego, Trujillo

DOI:

https://doi.org/10.17268/sci.agropecu.2014.04.04

Palabras clave:

Spirulina sp., agua de mar, Diodo Emisor de Luz Blanca, bicarbonato, modelo de Gompertz

Resumen

Se estudió la influencia de las variables proporción agua de mar (%) y concentración de bicarbonato en la producción de biomasa de Spirulina sp., utilizándose un Diseño Compuesto Central Rotacional (DCCR) para evaluar las regiones óptimas de producción de biomasa (ϕ), fase de adaptación (λ) velocidad específica de crecimiento (µ) y tiempo de generación (G), empleándose en cada ensayo el modelo matemático de Gompertz. Se obtuvo el mayor valor de biomasa (ϕ) log N/N0: 0,928 a las 168,8 horas en un medio de cultivo con pH de 8,8±0,1; a temperatura de 25ºC; con salinidad de 1,2% y 1,6 g/L de bicarbonato. El menor valor de ϕ fue de 0,45±0,01; obtenido coincidentemente en las repeticiones del punto central, utilizando una salinidad de 0,7% y 3,0g/L de bicarbonato en un medio con pH de 9,1±0,4 a 25ºC; lo que demuestra la importancia de la salinidad aportada por volumen de agua de mar en relación al bicarbonato, en la producción de biomasa de Spirulina. La iluminación fue de 2,7±1,2 klx, proporcionada por un Diodo Emisor de Luz Blanca (DELB) por 12 horas continuas y con una inyección de 0,86±0,09 L/s de aire por fotobiorreactor de 200 mL de capacidad. Solamente los valores de ϕ se ajustaron adecuadamente a la Superficie de Respuesta con un R2 de 0,99 para un modelo matemático cuadrático y p < 0,05, con un error absoluto medio de 2,4%.

Citas

Ayala, F.; Díaz, M. E.; Bravo, R. 1985. Microalgae in salt-water media. Arch. Hydrobiol. Beih. Ergeb. Limnol. 20: 53-61.

Belay, A.; Ota, Y.; Miyakawa, K.; Shimamatsu, H. 1993. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5: 235-241.

Belay, A.; Ota, Y.; 1994. Production of high quality Spirulina at earthrise farms. In: Phang, S.M., Borowitzka, M.A., Whitton, B. (Eds.), Algal Biotechnology in the Asia-Pacific region. University of Malaya, Kuala Lumpur.

Belay, A.M. 2002. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. The Journal of the American Nutraceutical Association 5: 27-49.

Belkin, S.; Boussiba, S. 1971. Resistance of Spirulina platensis (Cyanophyta) to high pH values. Plant Cell Physiology 32: 953-958.

Blanken, W.; Cuaresma, C.; Wijffels, R.H.; Janssena, M. 2013. Cultivation of microalgae on artificial light comes at a cost. Algal Research 2: 333-340.

Bozkurt, H.; Erkmen, O. 2001. Predictive modeling of Yersina enterocolitica in Turkish Feta cheese during storage. J. Food Eng. 47: 81-87.

Carvalho, A.O.; Silva, S.O.; Baptista, J.M. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol. Biotechnol. 89:1275-1288.

Çelekli. A.; Yavuzatmaca, M. 2009. Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresource Technology 100: 1847-1851.

Cohen, Z. 1986. Products from microalgae. In: Richmond, A. (Ed.), CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida.

Dawczynski, C.; Hackermeier, U.; Viehweger, M.; Stange, R.; Springer, M.; Jahreis, G. 2011. Incorporation of n−3 PUFA and γ-linolenic acid in blood lipids and red blood cell lipids together with their influence on disease activity in patients with chronic inflammatory arthritis - a randomized controlled human intervention trial. Lipids in Health and Disease 10: 1-12.

Deng, R.; Chow, T.J. 2010. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics 28: e33-e45.

Downham, A.; Collins, P. 2000. Coloring our foods in the last and next millennium. Int. J. Food Sci. Technol. 35: 5-22.

Estrada, J.E.; Bescós, P.; Villar del Fresno, A.M. 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco 56: 497-500.

Fan, Y.Y.; Chapkin, R.S. 1998. Importance of dietary γ-linolenic acid in human health and nutrition. The Journal of Nutrition 128: 1411-1414.

Faucher, O.; Coupal, B.; Leduy, A.; 1979. Utilization of seawater-urea as a culture medium for Spirulina maxima. Can. J. Microbiol. 25: 752-759.

Garnier, F.; Thomas, J.C. 1993. Light regulation of phycobiliproteins in Spirulina maxima. In: Doumenge, F., Durand-Chastel, H., Toulemont, A. (eds.) Spirulina Algae of Life. Spirulina Algae de Vie. Monaco Musee Oceanographique NS. 12: 41-48.

Glazer, A.N. 1994. Phycobiliproteins – a family of valuable widely used fluorophores. J. Appl. Phycol. 6: 105-112.

Kay, R.A.; Barton, L.L. 1991. Microalgae as food and supplement, Crit. Rev. Food Sci. 30: 555-573.

Leema, J.T.; Kirubagaran, R.; Vinithkumar, N.V.; Dheenan, P.S.; Karthikayulu, S. 2010. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology 101: 9221-9227.

Madkour, F.F.; Kamil, A.E.; Nasr, H.S. 2012. Production and nutritive value of Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research 38: 51-57.

Mahajan, G.; Kamat, M. 1995. γ-Linolenic acid production from Spirulina platensis. Applied Microbiology and Biotechnology 43: 466-469.

Mano-Pappu, S.J.; Vijayakumar, K.G., Ramamurthy, V. 2013. Artificial neural network model for predicting production of Spirulina platensis in outdoor culture. Bioresource Technology 130: 224-230.

Márquez-Rocha, F.J.; Sasaki, k.; Nishio, N.; Nagai, S. 1995. Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis. Biotechnol. Lett. 17: 225-238.

Materassi, R.; Tredici, M.; Balloni, W. 1984. Spirulina culture in seawater. Appl. Microbiol. Biotechnol. 19: 384-486.

Moreno, J.; Rodriguez, H.; Vargas, M.A.; Rivas, J.; Guerrero, M.G. 1995. Nitrogenfixing cyanobacteria as source of phycobiliprotein pigments. Composition and growth performance of ten filamentous heterocystous strains. J. Appl. Phycol. 7: 17-23.

Ogbonda, K.H.; Aminigo, R.E.; Abu, G.O. 2007. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology 98: 2207-2211.

Ono, E.; Cuello, J.L. 2004. Design parameters of solar concentrating systems for CO2 mitigating algal photobioreactors. Energy 29: 1651-1657.

Qureshi, M.; Ali, R. 1996. Spirulina platensis exposure enhances macrophage phagocytic function in cats, Immunopharmacol. Immunotoxicol 18: 457-463.

Qureshi, M.; Garlich, J.; Kidd, M. 1996. Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacol. Immunotoxicol 18: 465-476.

Saxena, P.N.; Ahmad, M.R.; Shyam, K.; Amla, D.V. 1982. Cultivation of Spirulina in sewage for poultry feed. Experientia 39: 1077-1083.

Schlösser, U.G. 1982. Sammlung von Algenkulturen. Ber. Deutsch Bot. Ges. 95: 18-276.

Singh, B.D., 1998. Biotechnology. Kalyani Publishers, New Delhi. 498-510.

Tanticharoen, M.; Bunnag, B.; Vonshak, A. 1993. Cultivation of Spirulina using secondary treated starch wastewater. Australasian Biotechnology 3: 223-226.

Tredici, M.; Papuzzo, T.; Tomaselli, L. 1986. Outdoor mass culture of Spirulina maxima in sea-water. Appl. Microbiol. Biotechnol. 24: 47-50.

Vasquez-Villalobos, V.; Artega, P.; Chanamé, K.; Esquivel, A. 2013. Modelamiento matemático y por redes neuronales artificiales del crecimiento de Spirulina sp. en fotobiorreactor con fuente de luz fluorescente e iluminación en estado sólido. Scientia Agropecuaria 4: 199-209.

Vieira, J.A.; Colla, L.M.; Duarte, P.F. 2004. Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology 92: 237-241.

Vonshak, A. 1997. Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor and Francis, London.

Watson, L. 1988. The properties of seawater. Jones & Bartlett, LLC. 7-126.

Wang, C.Y.; Fu, C.C.; Liu, Y.C. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J. 37:21-25.

Wu, B.; Tseng, C.K.; Xiang, W. 1993. Large scale cultivation of Spirulina in seawater based culture medium. Bot. Mar. 36: 99-102.

Yilmaz, H. K.; Yas, D.; Yilmaz, H.; Özoğul, Y. 2010. The effects of different salinity rates on fat and fatty acid composition of spirulina platensis. Journal of Fisheries Sciences 4(3): 282-286.

Zarrouk, C. 1966, Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris, France.

Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. 1990. Modeling of bacterial growth curve. Appl. Environ. Microbiol. 56: 1875-1881.

Received: 22/09/14

Accepted: 03/12/14

Corresponding author: vvasquezv@upao.edu.pe (V. Vásquez-Villalobos).

Descargas

Publicado

2014-12-20

Cómo citar

Vasquez-Villalobos, V., Vergaray, D., Suarez, S., Valladares, J., Zamora, A., Gaspar, K., & Escurra, X. (2014). Influencia de la proporción agua de mar y bicarbonato en la producción de biomasa de Spirulina sp. con iluminación de diodo emisor de luz. Scientia Agropecuaria, 5(4), 199-209. https://doi.org/10.17268/sci.agropecu.2014.04.04

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a