Comparison of the hydrocolloids Nostoc commune and Nostoc sphaericum: Drying, spectroscopy, rheology and application in nectar

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2020.04.14

Palabras clave:

hydrocolloid, nostoc, lyophilized, hot air, rheology, functional food, FTIR.

Resumen

Present work proposes the substitution of traditional food stabilizers from the hydrocolloids of algae. Hydrocolloids from Nostoc commune and Nostoc sphaericum were extracted, characterized by infrared spectroscopy, and modelled their rheological behavior. The dried extract samples were dried by lyophilization and hot air and diluted in water at concentrations of 0.15% and 0.25% and lastly stored at different temperatures (7 – 80 °C). The infrared indicated C – O – C vibrations corresponding to the glucose cycle (1020 cm-1) and C = O of carboxyl groups (1950 cm-1) are proper of hydrocolloids. Rheological models of Bingham, Ostwald and Herschel-Bulkley confirmed that the Nostoc coomune species presents a higher coefficient of plastic viscosity (η) and coefficient of consistency (k) than Nostoc commune; the freeze drying method had a positive influence and significant on these results (p < 0.05). Likewise, the hydrocolloid samples were diluted under nectar conditions (12 °Brix and 4.5 pH) taking carboxymethyl cellulose (CMC) as a control, finding that there is less influence of temperature on the consistency index of hydrocolloids in the order of Nostoc sphericum < Nostoc commune < CMC. It is concluded that the application of hydrocolloids of the genus nosctoc can be used as additives in the preparation of nectar, maintaining their rheological properties.

Citas

Ai, W.; Fang, Y.; Xiang, S.; et al. 2015. Protein/Polysaccharide Electrostatic Complexes and Their Applications in Stabilizing Oil-in-Water Emulsions. Journal of nutritional science and vitaminology 61: S168-169.

Alpizar-Reyes, E.; Román-Guerrero, A.; GallardoRivera, R.; et al. 2018. Rheological properties of tamarind (Tamarindus indica L.) seed mucilage obtained by spray-drying as a novel source of hydrocolloid. International Journal of Biological Macromolecules 107: 817-824.

An, Y.J.; Guo, C.F.; Zhang, M.; et al. 2018. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. Journal of the Science of Food and Agriculture 99: 639-64.

Carhuapoma, D.V.; Valencia, N.; Mayhua, P.; et al. 2015. Levels of flour Nostoc Commune algae in increasing in guinea pigs live weight (Cavia porcellus) weaned. Revista Complutense de Ciencias Veterinarias 9: 1-6.

Capitani, M.I.; Corzo-Rios, L.J.; Chel-Guerrero, L.A.; et al. 2015. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage, J. Food Eng 149: 70-77.

El-Mansy, H.A.; Sharoba, A.M.; Bahlol, H.EL.M.; et al. 2005. Rheological Properties of Mango & Papaya Nectar Blends. Annals of Agric. Sc., Moshtohor 43: 665-686.

Fidor, A.; Konkel, R.; Mazur-Marzec, H. 2019. Review Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review. Marine Drugs 17: 561-577.

Figueroa-Flórez, J. A.; Barragán-Viloria, K.; Salcedo-Mendoza, J. G. 2017. Comportamiento reológico en pulpa edulcorada de mango (Mangifera indica L. cv. Magdalena river). Corpoica Ciencia y Tecnología Agropecuaria 18: 615-627.

Gao, Z.; Fang, Y.; Cao, Y.; et al. 2017. Hydrocolloid-food component interactions. Food Hydrocolloids 68: 149-156.

Inocente M.A.; Jurado, B.; Ramos, E.; et al. 2019. Actividad hipoglucemiante in vitro de los polisacáridos digeridos de Nostoc sphaericum Vaucher ex Bornet & Flahault (cushuro). Horiz Med (Lima) 19: 26-31.

Inoue-Sakamoto, K.; Tanji, Y.; Yamaba, M.; et al. 2018. Characterization of extracellular matrix components from the desiccation-tolerant cyanobacterium Nostoc commune. The Journal of General and Applied Microbiology 64: 15-25.

Jensena, S.; Petersen, B.O.; Omarsdottira, S.; et al. 2013. Structural characterisation of a complex heteroglycan from the cyanobacterium Nostoc commune. Carbohydr Polym 91: 370-376.

Jurado, B.T.; Fuertes, R.; Tomas, C.G.E.; et al. 2014. Estudio fisicoquímico, microbiológico y toxicológico de los polisacáridos del Nostoc commune y Nostoc sphaericum. Rev. Per. Quím. Ing. Quím 17: 15-22.

Kim, W. W.; Yoo, B. 2011. Rheological and thermal effects of galactomannan addition to a corn starch paste. LWT - Food Science and Technology 44: 759-764.

Konur, O. 2020. The scientometric analysis of the research on the algal foods. Handbook of Algal Science, Technology and Medicine. Turkey. Pp. 485-506.

Kumar, R.; Bawa, A. S.; Manjunatha, S. S.; et al. 2015. Effect of pulsed electric field and pasteurisation treatments on the rheological properties of mango nectar (Mangifera indica). Croat. J. Food Sci. Technol 7: 22-33.

Li, Y.; Wang, X.; Lv, X.; et al. 2020. Extractions and rheological properties of polysaccharide from okra pulp under mild conditions. International Journal of Biological Macromolecules 148: 510-517.

Li, Z.; Guo, M. 2017. Healthy efficacy of Nostoc commune Vaucher. Oncotarget 9: 14669-14679.

Liu, W.; Liu, Y.; Zhu, R.; et al. 2016. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydrate Polymers 147: 114-124.

Liu, Y.; Su, P.; Xu, J.; et al. 2018. Structural characterization of a bioactive water-soluble heteropolysaccharide from Nostoc sphaeroids kütz. Carbohydrate Polymers 200: 552-559.

Ortega, F.; Salcedo, E.; Arrieta, R.; et al. 2015. Efecto de la temperatura y concentración sobre las propiedades reológicas de la pulpa de mango variedad Tommy Atkins. Revista Ion 28: 79-92.

Quan, Y.; Yang, S.; Wan, J.; et al. 2015. Optimization for the extraction of polysaccharides from Nostoc commune and its antioxidant and antibacterial activities. Journal of the Taiwan Institute of Chemical Engineers 52: 14-21.

Qin, Y. 2018. Production of Seaweed-Derived Food Hydrocolloids. Bioactive Seaweeds for Food Applications. China. Pp. 53-69.

Rasmussen, H.E.; Blobaum, K.R.; Park, Y.K.; et al. 2008. Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. The Journal of Nutrition 138: 476-81.

Rodriguez, S.; Gonzales, K. N.; Romero, E. G.; et al. 2017. Unusual reversible elastomeric gels from Nostoc commune. International Journal of Biological Macromolecules 97: 411-417.

Tang, J.; Hu, Z.Y.; Chen, X.W. 2007. Free radical scavenging and antioxidant enzymes activation of polysaccharide extract from Nostoc sphaeroides. Am J Chin Med 35: 887-896.

Villanueva, E.; Rodríguez, G.; Aguirre, E.; et al. 2017. Influence of antioxidants on oxidative stability of the oil Chia (Salvia hispanica L.) by rancimat. Scientia Agropecuaria 8: 19-27.

Wang, Y.; Liu, J.; Liu, X.; et al. 2019. Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis. International Journal of Biological Macromolecules 128: 421-428.

Wu, Y; Ding, W; Jia, L; et al. 2015. The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry 168: 366-371.

Xu, J.; Zhang, M.; Adhikari, B. 2017. Comparative study on the effect of radio frequency and high-pressure pasteurization on the texture, water distribution, and rheological properties of Nostoc sphaeroides. Journal of Applied Phycology 30: 1041-1048.

Zongjie, H.; Dunhai, L.; Yanhui, L.; et al. 2011. Nostoc sphaeroides Kutzing, an excellent candidate producer for CELSS. Advances in Space Research 48: 1565-1571.

Publicado

2020-11-29

Cómo citar

Torres-Maza, A., Yupanqui-Bacilio, C., Castro, V., Aguirre, E., Villanueva, E., & Rodríguez, G. (2020). Comparison of the hydrocolloids Nostoc commune and Nostoc sphaericum: Drying, spectroscopy, rheology and application in nectar. Scientia Agropecuaria, 11(4), 583-589. https://doi.org/10.17268/sci.agropecu.2020.04.14

Número

Sección

Artículos originales