Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks

Autores/as

  • Lisbeth Monzón Universidad Nacional del Santa
  • Gabriela Becerra Universidad Nacional del Santa, Av. Universitaria s/n – Chimbote.
  • Elza Aguirre Universidad Nacional del Santa, Av. Universitaria s/n – Chimbote.
  • Gilbert Rodríguez Universidad Nacional del Santa, Av. Universitaria s/n – Chimbote.
  • Eudes Villanueva Escuela de Posgrado, Especialidad de Tecnología de Alimentos. Universidad Nacional Agraria La Molina, Lima.

DOI:

https://doi.org/10.17268/sci.agropecu.2021.004

Palabras clave:

Avocado residues, ultrasound-assisted extraction, phenolic components, response surface methodology, artificial neural network

Resumen

Seed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model and optimize the conditions of ultrasound-assisted extraction (UAE) (25 W/L) with respect to temperature (40 - 60 °C), concentration of ethanol/water (30% - 60%) and extraction time (40 - 80 min) in obtaining phenolic from avocado residues. RSM and ANN allowed finding an optimal phenolic content for seeds (145.170 - 146.569 mg GAE/g; 49 °C, 41.2% and 65.5 - 65.1 min) and peels (124.050 - 125.187 mg GAE/g; 50.9 °C, 49.5% and 61.8 min). The models estimated between predicted and experimental values were significant (p < 0.05), presenting a high correlation (R2> 0.9907) and a low root mean square error for the prediction of phenolics (RMSE < 0.9437 mg GAE/g). The results of this study allow the design of efficient, economic and ecologically friendly extraction procedures in the industry for obtaining bioactive metabolites from avocado residues.

Citas

Agu, C. M., Kadurumba, C. H., Agulanna, A. C., Aneke, O. O., Agu, I. E., & Eneh, J. N. (2018). Nonlinear Kinetics, Thermodynamics, and parametric studies of Colocynthis vulgaris Shrad seeds oil extraction. Industrial Crops and Products, 123, 386-400.

Akowuah, G. A., Mariam, A., & Chin, J.H. (2009). The effect of extraction temperature on total phenols and antioxidant activity of Gynura procumbens leaf. Phcog Mag, 5, 81-5.

Arruda, H. S., Silva, E. K., Pereira, G. A., Angolini, C. F. F., Eberlin, M. N., Meireles, M. A. A., & Pastore, G. M. (2018). Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrasonics Sonochemistry, 50, 82–95.

Ameer, K., Chun, B.-S., & Kwon, J.-H. (2017). Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Industrial Crops and Products, 109, 672–685.

Bahru, T., Tadele, Z., & Ajebe, E. (2019). A Review on Avocado Seed: Functionality, Composition, Antioxidant and Antimicrobial Properties. Chemical Science International Journal, 27(2), 1-10. doi: 10.9734/CSJI/2019/v27i230112

Betiku, E., & Ajala, S. O. (2014). Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology. Industrial Crops and Products, 53, 314–322.

Betiku, E., Okunsolawo, S. S., Ajala, S. O., & Odedele, O. S. (2015). Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renewable Energy, 76, 408-417.

Bi, J., Yang, Q., Sun, J.; Chen, J., & Zhang, J. (2011). Study on ultrasonic extraction technology and oxidation resistance of total flavonoids from peanut hull. Food Science and Technology Research, 17(3): 187-198.

Calderón-Oliver, M., Escalona-Buendía, H. B., Medina-Campos, O. N., Pedraza-Chaverri, J., Pedroza-Islas, R., & Ponce-Alquicira, E. (2016). Optimization of the Antioxidant and Antimicrobial Response of the Combined Effect of Nisin and Avocado Byproducts. LWT - Food Sci. Technol, 65, 46-52.

Dabas, D., Shegog, R., Ziegler, G., & Lambert, J.D. (2013). Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr. Pharm, Des 19, 6133-6140.

Dai, J., & Mumper, R.J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352.

Ejiofor, N.C., Ezeagu, I.E., Ayoola, M., & Umera, E.A. (2018). Determination of the chemical composition of avocado (Persea americana) seed. Adv Food Technol Nutr Sci Open J., SE(2): S51-S55.

Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., & Segura-Carretero, A. (2018a). Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chemistry, 245, 707-716.

Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., Quirantes-Piné, R., & Segura-Carretero, A. (2018b). Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. ELECTROPHORESIS, 39(15), 1908–1916.

Gómez-López, V. (2002). Fruit characterization of high oil content avocado varieties. Sci. Agric, 59, 403-406.

Gondim, J.A.M., Moura, M.D.F.V., Dantas, A.S., Medeiros, R.L., & Santos, K.M. (2005). Composição Centesimal E De Minerais Em Cascas De Frutas. Ciência E Tecnol. Aliment, 25(4), 825-827.

Hayat, K., Hussain, S., Abbas, S., Farooq, U., Ding, B., Xia, S., … Xia, W. (2009). Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70(1), 63–70.

JimÉnez, P., Garcia, P., Quitral, V., Vasquez, K., Parra-Ruiz, C., Reyes-Farias, M., … Soto-Covasich, J. (2020). Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Reviews International, 1–37.

Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering & Processing: Process Intensification, 137, 1-11.

Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., & Dykes, G. A. (2012). Phenolic Compound Profiles and Antioxidant Capacity of Persea americana Mill. Peels and Seeds of Two Varieties. Journal of Agricultural and Food Chemistry, 60(18), 4613-4619.

López-Cobo, A., Gómez-Caravaca, A. M., Pasini, F., Caboni, M.F., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as Valuable Tools for the Determination of Phenolic and Other Polar Compounds in the Edible Part and by-Products of Avocado. LWT, 73, 505-513.

Lu, J., Xu, Y., Yang, M., Fu, X., Luo, F., & Li, Z. (2015). Optimization of Ultrasound-Assisted Extraction of Flavonoids from Cryptotaenia japonica Hassk. and Evaluation of Antioxidant Activity. Journal of Agricultural Science, 7(7), 138-146.

Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., … Ferreira, I. C. R. F. (2018). Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Industrial Crops and Products, 111, 212-218.

Morais, D. R., Rotta, E. M., Sargi, S. C., Schmidt, E. M., Bonafe, E. G., Eberlin, M. N., … Visentainer, J. V. (2015). Antioxidant activity, phenolics and UPLC–ESI(–)–MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77, 392-399.

More, P. R., & Arya, S. S. (2019). A novel, green cloud point extraction and separation of phenols and flavonoids from pomegranate peel: an optimization study using RCCD. Journal of Environmental Chemical Engineering, 7, 103306.

Nazghelichi, T., Aghbashlo, M., & Kianmehr, M. H. (2011). Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture, 75(1), 84-91.

Nipornram, S., Tochampa, W., Rattanatraiwong, P., & Singanusong, R. (2018). Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry, 241, 338-345

Onoji, S. E., Iyuke, S. E., Igbafe, A. I., & Daramola, M. O. (2017). Hevea brasiliensis (rubber seed) oil: modeling and optimization of extraction process parameters using response surface methodology and artificial neural network techniques. Biofuels, 1-15.

Pahua-Ramos, M. E., Ortiz-Moreno, A., Chamorro-Cevallos, G., Hernández-Navarro, M. D., Garduño-Siciliano, L., Necoechea-Mondragón, H., & Hernández-Ortega, M. (2012). Hypolipidemic Effect of Avocado (Persea americana Mill) Seed in a Hypercholesterolemic Mouse Model. Plant Foods for Human Nutrition, 67(1), 10-16.

Qadir, R., Anwar, F., Gilani, M. A., Zahoor, S., Misbah ur Rehman, M., & Mustaqeem, M. (2019). RSM/ANN based optimized recovery of phenolics from mulberry leaves by enzyme-assisted extraction. Czech Journal of Food Sciences, 37(2), 99-105.

Ramić, M., Vidović, S., Zeković, Z., Vladić, J., Cvejin, A., & Pavlić, B. (2015). Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry, 23, 360-368.

Rodríguez-Carpena, J.-G., Morcuende, D., Andrade, M.-J., Kylli, P., & Estévez, M. (2011). Avocado (Persea americana Mill.) Phenolics, In Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. Journal of Agricultural and Food Chemistry, 59(10), 5625-5635.

Rodsamran, P. & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience, 28, 66-73.

Rosero, J. C., Cruz, S., Osorio, C., & Hurtado, N. (2019). Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules, 24(17), 3209.

Saavedra, J., Córdova, A., Navarro, R., Díaz-Calderón, P., Fuentealba, C., Astudillo-Castro, C., … Galvez, L. (2017). Industrial avocado waste: Functional compounds preservation by convective drying process. Journal of Food Engineering, 198, 81-90.

Shirsath, S. R., Sable, S. S., Gaikwad, S. G., Sonawane, S. H., Saini, D. R., & Gogate, P. R. (2017). Intensification of extraction of curcumin from Curcuma amada using ultrasound-assisted approach: Effect of different operating parameters. Ultrasonics Sonochemistry, 38, 437-445.

Singanusong, R., Nipornram, S., Tochampa, W., & Rattanatraiwong, P. (2014). Low Power Ultrasound-Assisted Extraction of Phenolic Compounds from Mandarin (Citrus reticulata Blanco cv. Sainampueng) and Lime (Citrus aurantifolia) Peels and the Antioxidant. Food Analytical Methods, 8(5), 1112-1123.

Stahl, P., Mirom, Y. L., Stern, R. A., & Goldway, M. (2019). Comparing “Iriet” and “Ettinger” avocado cultivars as pollinators of “Hass” using SNPs for paternal identification. Scientia Horticulturae, 248, 50–57.

Tremocoldi, M. A., Rosalen, P. L., Franchin, M., Massarioli, A. P., Denny, C., Daiuto, É. R., … Alencar, S. M. de. (2018). Exploration of avocado by-products as natural sources of bioactive compounds. PLOS ONE, 13(2), e0192577.

Trujillo‐Mayol, I., Céspedes‐Acuña, C., Silva, F. L., & Alarcón‐Enos, J. (2019). Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. Journal of Food Process Engineering, 42(6), e13197.

Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178.

Wang, W., Bostic, T. R., & Gu, L. (2010). Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry, 122(4), 1193-1198.

Weremfo, A., Adulley, F., & Adarkwah-Yiadom, M. (2020). Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. Journal of Analytical Methods in Chemistry, 2020, 1–11.

Zhang, G., Chen, Y., Tariq, K., An, Z., Wang, S., Qumar Memon, F., … Si, H. (2020). Optimization of ultrasound assisted extraction method for polyphenols from Desmodium triquetrum (L.) DC. with response surface methodology (RSM) and in vitro determination of its antioxidant properties. Czech Journal of Food Sciences, 38(2), 115–122.

Zhou, T., Xu, D.-P., Lin, S.-J., Li, Y., Zheng, J., Zhou, Y., … Li, H.-B. (2017). Ultrasound-Assisted Extraction and Identification of Natural Antioxidants from the Fruit of Melastoma sanguineum Sims. Molecules, 22(2), 306.

Publicado

— Actualizado el 2021-02-09

Cómo citar

Monzón, L., Becerra, G. ., Aguirre, E. ., Rodríguez, G. ., & Villanueva, E. . (2021). Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks. Scientia Agropecuaria, 12(1), 33-40. https://doi.org/10.17268/sci.agropecu.2021.004

Número

Sección

Artículos originales