Optimizing the flight altitude of the Agras T40 drone for controlling Spodoptera frugiperda in maize (Zea mays L.) plantations

Autores/as

  • José Lizardo Reyna-Bowen Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Manabí, Ecuador. https://orcid.org/0000-0003-0352-4005
  • Leonela Murillo Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Manabí, Ecuador. https://orcid.org/0009-0005-4858-8442
  • Heber Cedeño Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Manabí, Ecuador.
  • Lenin Vera Montenegro Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Manabí, Ecuador. https://orcid.org/0000-0002-6885-2002
  • María Isabel Delgado-Moreira Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Manabí, Ecuador. https://orcid.org/0000-0002-3368-7481
  • Sofía Velásquez Cedeño Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Manabí, Ecuador. https://orcid.org/0000-0001-5141-0489

DOI:

https://doi.org/10.17268/agroind.sci.2025.03.17

Palabras clave:

pesticides aerial spraying, precision agriculture, spray height, Unmanned Aerial Vehiclee

Resumen

This study aimed to determine the optimal flight height for controlling Spodoptera frugiperda in maize (Zea mays L.) plantations using the Agras T40 drone. The research was conducted in Manabí, Ecuador, the experiment compared two UAV-based treatments (5 m and 7 m flight altitudes) with a conventional backpack sprayer control. The Agras T40, equipped with rotary atomizers, applied specific pesticide mixtures on August 30 and June 9, 2024. Plant damage assessments, using GNSS and photogrammetry, were conducted pre and post application. Statistical analyses, including paired t-tests and ANOVA with Tukey HSD post-hoc tests, were performed to evaluate treatment efficacy. Results demonstrated that the 7m UAV treatment significantly reduced fall armyworm infestation compared to the 5m treatment and the conventional control. The 5m treatment showed an increase in infestation, likely due to increased canopy disturbance affecting droplet adherence. The 7 m UAV treatment achieved control comparable to the conventional method, but offered advantages in precision, sustainability and operator safety. This study highlights the potential of UAVs, specifically the Agras T40, for efficient and targeted fall armyworm management in maize, reducing chemical inputs and minimizing environmental impact.

Citas

Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/10.1016/j.jenvman.2020.110319

Albán, M., Zambrano, J., & Caviedes, G. (2024). Memorias de la XXV Reunión Latinoamericana de Maíz: IXIM “Maíz, lo que sustenta la vida“. Universidad San Francisco de Quito. Reunión Latinoamericana de Maíz: IXIM “Maíz, lo que sustenta la vida“, Ecuador. https://revistas.usfq.edu.ec/index.php/archivosacademicos/article/view/3399/3897

Bautista, A. S., Tarrazó-Serrano, D., Uris, A., Blesa, M., Estruch-Guitart, V., Castiñeira-Ibáñez, S., & Rubio, C. (2024). Remote Sensing Evaluation Drone Herbicide Application Effectiveness for Controlling Echinochloa spp. In Rice Crop in Valencia (Spain). Sensors, 24(3), 804. https://doi.org/10.3390/s24030804

Bohner, M., Domoshnitsky, A., Kupervasser, O., Sitkin, A., Missouri S&T, Rolla, MO 65409, USA, Ariel University, Ariel, Israel, & Sami Shamoon College of Engineering, Be$ ’ $er Sheva, Israel. (2025). Floquet theory for first-order delay equations and an application to height stabilization of a drone’s flight. Electronic Research Archive, 33(5), 2840–2861. https://doi.org/10.3934/era.2025125

Byers, C., Virk, S., Rains, G., & Li, S. (2024). Spray deposition and uniformity assessment of unmanned aerial application systems (UAAS) at varying operational parameters. Frontiers in Agronomy, 6, 1418623. https://doi.org/10.3389/fagro.2024.1418623

Guebsi, R., Mami, S., & Chokmani, K. (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686. https://doi.org/10.3390/drones8110686

Ji, J., Li, N., Cui, H., Li, Y., Zhao, X., Zhang, H., & Ma, H. (2023). Study on Monitoring SPAD Values for Multispatial Spatial Vertical Scales of Summer Maize Based on UAV Multispectral Remote Sensing. Agriculture, 13(5), 1004. https://doi.org/10.3390/agriculture13051004

Kenis, M., Benelli, G., Biondi, A., Calatayud, P.-A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., Van Den Berg, J., Verheggen, F., Zhang, Y.-J., Agboyi, L. K., Ahissou, R. B., Ba, M. N., & Wu, K. (2023). Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis, 43(2), 187–241. https://doi.org/10.1127/entomologia/2022/1659

Kumar, R. M., Gadratagi, B.-G., Paramesh, V., Kumar, P., Madivalar, Y., Narayanappa, N., & Ullah, F. (2022). Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda. Agronomy, 12(9), 2150. https://doi.org/10.3390/agronomy12092150

Laghari, A. A., Jumani, A. K., Laghari, R. A., & Nawaz, H. (2023). Unmanned aerial vehicles: A review. Cognitive Robotics, 3, 8–22. https://doi.org/10.1016/j.cogr.2022.12.004

Mahamuni, S. M., Patil, S. S., Bachhav, S. S., & Shaniware, Y. A. (2024). Implementation of drone technology for precision pest management in advanced agriculture. International Journal of Statistics and Applied Mathematics, 13–18. https://www.mathsjournal.com/pdf/2024/vol9issue4S/PartA/S-9-3-20-449.pdf

Matova, P. M., Kamutando, C. N., Magorokosho, C., Kutywayo, D., Gutsa, F., & Labuschagne, M. (2020). Fall‐armyworm invasion, control practices and resistance breeding in Sub‐Saharan Africa. Crop Science, 60(6), 2951–2970. https://doi.org/10.1002/csc2.20317

Mourya, P., Singh, J., Chaudhary, P., Kumar, A., & Upadhayay, V. (2024). Role of Drone Technology in Insect Pest Management. Journal of Economic Entomology, 113(1), 1–25. https://doi.org/10.1093/jee/toz268

Onler, E., Ozyurt, H. B., Sener, M., Arat, S., Eker, B., & Celen, I. H. (2023). Spray Characterization of an Unmanned Aerial Vehicle for Agricultural Spraying. The Philippine Agricultural Scientist, 106(1), 39–46. https://doi.org/10.62550/AR007022

Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protection, 145, 105641. https://doi.org/10.1016/j.cropro.2021.105641

Ozkan, E. (2023). Drones for Spraying Pesticides—Opportunities and Challenges. College of Food, Agricultural, and Environmental Sciences. https://pested.osu.edu/sites/pested/files/imce/FABE-540_1.pdf

Pandiselvam, R., Daliyamol, Imran S, S., Hegde, V., Sujithra, M., Prathibha, P. S., Prathibha, V. H., & Hebbar, K. B. (2024). Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Heliyon, 10(19), e38569. https://doi.org/10.1016/j.heliyon.2024.e38569

Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in Control Strategies against Spodoptera frugiperda. A Review. Molecules, 26(18), 5587. https://doi.org/10.3390/molecules26185587

Ranabhat, S., & Price, R. (2025). Effects of Flight Heights and Nozzle Types on Spray Characteristics of Unmanned Aerial Vehicle (UAV) Sprayer in Common Field Crops. AgriEngineering, 7(2), 22. https://doi.org/10.3390/agriengineering7020022

Saini, N., Singh, H., & Gouda, M. R. (2024). Use of drones in precision pest management. International Journal of Research in Agronomy, 7(8S), 854–858. https://doi.org/10.33545/2618060X.2024.v7.i8Sk.1399

Shanmugam, P. S., Srinivasan, T., Baskaran, V., Suganthi, A., Vinothkumar, B., Arulkumar, G., Backiyaraj, S., Chinnadurai, S., Somasundaram, V., Sathiah, N., Muthukrishnan, N., Krishnamoorthy, S. V., Prabakar, K., Douresamy, S., Johnson Edward Thangaraj, Y. S., Pazhanivelan, S., Ragunath, K. P., Kumaraperumal, R., Jeyarani, S., … Mohankumar, A. P. (2024). Comparative analysis of unmanned aerial vehicle and conventional spray systems for the maize fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera; Noctuidae) management. Plant Protection Science, 60(2), 181–192. https://doi.org/10.17221/96/2023-PPS

Song, X.-P., Liang, Y.-J., Zhang, X.-Q., Qin, Z.-Q., Wei, J.-J., Li, Y.-R., & Wu, J.-M. (2020). Intrusion of Fall Armyworm (Spodoptera frugiperda) in Sugarcane and Its Control by Drone in China. Sugar Tech, 22(4), 734–737. https://doi.org/10.1007/s12355-020-00799-x

Tay, W. T., Meagher, R. L., Czepak, C., & Groot, A. T. (2023). Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annual Review of Entomology, 68(1), 299–317. https://doi.org/10.1146/annurev-ento-120220-102548

Toscano, F., Fiorentino, C., Capece, N., Erra, U., Travascia, D., Scopa, A., Drosos, M., & D’Antonio, P. (2024). Unmanned Aerial Vehicle for Precision Agriculture: A Review. IEEE Access, 12, 69188–69205. https://doi.org/10.1109/ACCESS.2024.3401018

Van Den Berg, J., & Du Plessis, H. (2022). Chemical Control and Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic Entomology, 115(6), 1761–1771. https://doi.org/10.1093/jee/toac108

Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J.-G. (2021). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies, 15(1), 217. https://doi.org/10.3390/en15010217

Vivekanandhan, P., Swathy, K., Lucy, A., Sarayut, P., & Patcharin, K. (2023). Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Frontiers in Cellular and Infection Microbiology, 13, 1254475. https://doi.org/10.3389/fcimb.2023.1254475

Descargas

Publicado

2025-10-11

Cómo citar

Reyna-Bowen, J. L., Murillo, L., Cedeño, H., Vera Montenegro, L., Delgado-Moreira, M. I., & Velásquez Cedeño, S. (2025). Optimizing the flight altitude of the Agras T40 drone for controlling Spodoptera frugiperda in maize (Zea mays L.) plantations. Agroindustrial Science, 14(3), 355-361. https://doi.org/10.17268/agroind.sci.2025.03.17

Número

Sección

Artículos de investigación