Optimizing the flight altitude of the Agras T40 drone for controlling Spodoptera frugiperda in maize (Zea mays L.) plantations
DOI:
https://doi.org/10.17268/agroind.sci.2025.03.17Keywords:
pesticides aerial spraying, precision agriculture, spray height, Unmanned Aerial VehicleeAbstract
This study aimed to determine the optimal flight height for controlling Spodoptera frugiperda in maize (Zea mays L.) plantations using the Agras T40 drone. The research was conducted in Manabí, Ecuador, the experiment compared two UAV-based treatments (5 m and 7 m flight altitudes) with a conventional backpack sprayer control. The Agras T40, equipped with rotary atomizers, applied specific pesticide mixtures on August 30 and June 9, 2024. Plant damage assessments, using GNSS and photogrammetry, were conducted pre and post application. Statistical analyses, including paired t-tests and ANOVA with Tukey HSD post-hoc tests, were performed to evaluate treatment efficacy. Results demonstrated that the 7m UAV treatment significantly reduced fall armyworm infestation compared to the 5m treatment and the conventional control. The 5m treatment showed an increase in infestation, likely due to increased canopy disturbance affecting droplet adherence. The 7 m UAV treatment achieved control comparable to the conventional method, but offered advantages in precision, sustainability and operator safety. This study highlights the potential of UAVs, specifically the Agras T40, for efficient and targeted fall armyworm management in maize, reducing chemical inputs and minimizing environmental impact.
References
Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/10.1016/j.jenvman.2020.110319
Albán, M., Zambrano, J., & Caviedes, G. (2024). Memorias de la XXV Reunión Latinoamericana de Maíz: IXIM “Maíz, lo que sustenta la vida“. Universidad San Francisco de Quito. Reunión Latinoamericana de Maíz: IXIM “Maíz, lo que sustenta la vida“, Ecuador. https://revistas.usfq.edu.ec/index.php/archivosacademicos/article/view/3399/3897
Bautista, A. S., Tarrazó-Serrano, D., Uris, A., Blesa, M., Estruch-Guitart, V., Castiñeira-Ibáñez, S., & Rubio, C. (2024). Remote Sensing Evaluation Drone Herbicide Application Effectiveness for Controlling Echinochloa spp. In Rice Crop in Valencia (Spain). Sensors, 24(3), 804. https://doi.org/10.3390/s24030804
Bohner, M., Domoshnitsky, A., Kupervasser, O., Sitkin, A., Missouri S&T, Rolla, MO 65409, USA, Ariel University, Ariel, Israel, & Sami Shamoon College of Engineering, Be$ ’ $er Sheva, Israel. (2025). Floquet theory for first-order delay equations and an application to height stabilization of a drone’s flight. Electronic Research Archive, 33(5), 2840–2861. https://doi.org/10.3934/era.2025125
Byers, C., Virk, S., Rains, G., & Li, S. (2024). Spray deposition and uniformity assessment of unmanned aerial application systems (UAAS) at varying operational parameters. Frontiers in Agronomy, 6, 1418623. https://doi.org/10.3389/fagro.2024.1418623
Guebsi, R., Mami, S., & Chokmani, K. (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686. https://doi.org/10.3390/drones8110686
Ji, J., Li, N., Cui, H., Li, Y., Zhao, X., Zhang, H., & Ma, H. (2023). Study on Monitoring SPAD Values for Multispatial Spatial Vertical Scales of Summer Maize Based on UAV Multispectral Remote Sensing. Agriculture, 13(5), 1004. https://doi.org/10.3390/agriculture13051004
Kenis, M., Benelli, G., Biondi, A., Calatayud, P.-A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., Van Den Berg, J., Verheggen, F., Zhang, Y.-J., Agboyi, L. K., Ahissou, R. B., Ba, M. N., & Wu, K. (2023). Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis, 43(2), 187–241. https://doi.org/10.1127/entomologia/2022/1659
Kumar, R. M., Gadratagi, B.-G., Paramesh, V., Kumar, P., Madivalar, Y., Narayanappa, N., & Ullah, F. (2022). Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda. Agronomy, 12(9), 2150. https://doi.org/10.3390/agronomy12092150
Laghari, A. A., Jumani, A. K., Laghari, R. A., & Nawaz, H. (2023). Unmanned aerial vehicles: A review. Cognitive Robotics, 3, 8–22. https://doi.org/10.1016/j.cogr.2022.12.004
Mahamuni, S. M., Patil, S. S., Bachhav, S. S., & Shaniware, Y. A. (2024). Implementation of drone technology for precision pest management in advanced agriculture. International Journal of Statistics and Applied Mathematics, 13–18. https://www.mathsjournal.com/pdf/2024/vol9issue4S/PartA/S-9-3-20-449.pdf
Matova, P. M., Kamutando, C. N., Magorokosho, C., Kutywayo, D., Gutsa, F., & Labuschagne, M. (2020). Fall‐armyworm invasion, control practices and resistance breeding in Sub‐Saharan Africa. Crop Science, 60(6), 2951–2970. https://doi.org/10.1002/csc2.20317
Mourya, P., Singh, J., Chaudhary, P., Kumar, A., & Upadhayay, V. (2024). Role of Drone Technology in Insect Pest Management. Journal of Economic Entomology, 113(1), 1–25. https://doi.org/10.1093/jee/toz268
Onler, E., Ozyurt, H. B., Sener, M., Arat, S., Eker, B., & Celen, I. H. (2023). Spray Characterization of an Unmanned Aerial Vehicle for Agricultural Spraying. The Philippine Agricultural Scientist, 106(1), 39–46. https://doi.org/10.62550/AR007022
Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protection, 145, 105641. https://doi.org/10.1016/j.cropro.2021.105641
Ozkan, E. (2023). Drones for Spraying Pesticides—Opportunities and Challenges. College of Food, Agricultural, and Environmental Sciences. https://pested.osu.edu/sites/pested/files/imce/FABE-540_1.pdf
Pandiselvam, R., Daliyamol, Imran S, S., Hegde, V., Sujithra, M., Prathibha, P. S., Prathibha, V. H., & Hebbar, K. B. (2024). Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Heliyon, 10(19), e38569. https://doi.org/10.1016/j.heliyon.2024.e38569
Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in Control Strategies against Spodoptera frugiperda. A Review. Molecules, 26(18), 5587. https://doi.org/10.3390/molecules26185587
Ranabhat, S., & Price, R. (2025). Effects of Flight Heights and Nozzle Types on Spray Characteristics of Unmanned Aerial Vehicle (UAV) Sprayer in Common Field Crops. AgriEngineering, 7(2), 22. https://doi.org/10.3390/agriengineering7020022
Saini, N., Singh, H., & Gouda, M. R. (2024). Use of drones in precision pest management. International Journal of Research in Agronomy, 7(8S), 854–858. https://doi.org/10.33545/2618060X.2024.v7.i8Sk.1399
Shanmugam, P. S., Srinivasan, T., Baskaran, V., Suganthi, A., Vinothkumar, B., Arulkumar, G., Backiyaraj, S., Chinnadurai, S., Somasundaram, V., Sathiah, N., Muthukrishnan, N., Krishnamoorthy, S. V., Prabakar, K., Douresamy, S., Johnson Edward Thangaraj, Y. S., Pazhanivelan, S., Ragunath, K. P., Kumaraperumal, R., Jeyarani, S., … Mohankumar, A. P. (2024). Comparative analysis of unmanned aerial vehicle and conventional spray systems for the maize fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera; Noctuidae) management. Plant Protection Science, 60(2), 181–192. https://doi.org/10.17221/96/2023-PPS
Song, X.-P., Liang, Y.-J., Zhang, X.-Q., Qin, Z.-Q., Wei, J.-J., Li, Y.-R., & Wu, J.-M. (2020). Intrusion of Fall Armyworm (Spodoptera frugiperda) in Sugarcane and Its Control by Drone in China. Sugar Tech, 22(4), 734–737. https://doi.org/10.1007/s12355-020-00799-x
Tay, W. T., Meagher, R. L., Czepak, C., & Groot, A. T. (2023). Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species. Annual Review of Entomology, 68(1), 299–317. https://doi.org/10.1146/annurev-ento-120220-102548
Toscano, F., Fiorentino, C., Capece, N., Erra, U., Travascia, D., Scopa, A., Drosos, M., & D’Antonio, P. (2024). Unmanned Aerial Vehicle for Precision Agriculture: A Review. IEEE Access, 12, 69188–69205. https://doi.org/10.1109/ACCESS.2024.3401018
Van Den Berg, J., & Du Plessis, H. (2022). Chemical Control and Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Economic Entomology, 115(6), 1761–1771. https://doi.org/10.1093/jee/toac108
Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J.-G. (2021). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies, 15(1), 217. https://doi.org/10.3390/en15010217
Vivekanandhan, P., Swathy, K., Lucy, A., Sarayut, P., & Patcharin, K. (2023). Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Frontiers in Cellular and Infection Microbiology, 13, 1254475. https://doi.org/10.3389/fcimb.2023.1254475
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 José Lizardo Reyna-Bowen, Leonela Murillo, Heber Cedeño, Lenin Vera Montenegro, María Isabel Delgado-Moreira, Sofía Velásquez Cedeño

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores conservan sus derechos de autor sin restricciones.