Effect of concentration and temperature on the rheological behavior of camu-camu pulp

Authors

  • Dayro del Águila Cifuentes Facultad de Ciencias e Ingeniería. Universidad Nacional Intercultural de la Amazonía, Carretera San José Km. 0.5, Yarinacocha, Ucayali.
  • Caleb Leandro Laguna Facultad de Ciencias e Ingeniería. Universidad Nacional Intercultural de la Amazonía, Carretera San José Km. 0.5, Yarinacocha, Ucayali.
  • Ronel Joel Bazán-Colque Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07, CEP 23890-000, Seropédica.
  • Jaime Eduardo Basilio Atencio Facultad de Ingeniería en Industrias Alimentarias, Universidad Nacional Agraria de la Selva, Carretera Central Km. 1.21, Tingo María, Huánuco.

DOI:

https://doi.org/10.17268/agroind.sci.2022.03.02

Keywords:

Myrciaria dubia, soluble solids, pseudoplastic fluid, consistency index, activation energy

Abstract

The objective of this study was to understand how the concentration of soluble solids (Cp) and temperature (Tp) affected the rheological behavior of camu-camu pulp. Factors of Cp (10 – 20 °Brix) and Tp (30 – 60 °C) were varied according to a 3 × 7 factorial design with three repetitions. Ripe camu-camu fruits showed biometric characteristics of weight (10.81 g), axial diameter (2.55 cm), and equatorial diameter (2.68 cm) before being pulped. Physicochemical characteristics of the pulp were: soluble solids (6.26 °Brix), pH (3.46), moisture (92.56%), and ascorbic acid (1.78 g/100 g). Pulp concentration was performed in a rotary evaporator and rheological measurements were evaluated in a Brookfield viscometer. The rheological parameters helped to calculate the consistency index (K: 11.82 to 69.29 Pa·sn) and flow index (n: 0.303 to 0.347) using the Power Law model (R2 > 0.9), revealing the nature of the shear thinning (pseudoplastic behavior). The activation energy varied from 8.51 to 10.21 kJ/mol. The rheological results of concentrated camu-camu pulps can be used as parameters for quality and dimensioning equipment, pipes, heat exchangers, filters, and pumps.

References

Álvarez, E., Cancela, M. A., & Maceiras, R. (2007). Effect of Temperature on Rheological Properties of Different Jams. International Journal of Food Properties, 9(1), 135–146.

AOAC. (2005). Official methods of analysis of AOAC International. (18th ed.), AOAC International, Gaithersburg.

Arellano-Acuña, E., Rojas-Zavaleta, I., Luz, ;, & Paucar-Menacho, M. (2016). Camu-camu (Myrciaria dubia): Fruta tropical de excelentes propiedades funcionales que ayudan a mejorar la calidad de vida. Scientia Agropecuaria, 7(4), 433–443.

Barbieri, S. F., de Oliveira Petkowicz, C. L., de Godoy, R. C. B., de Azeredo, H. C. M., Franco, C. R. C., & Silveira, J. L. M. (2018). Pulp and Jam of Gabiroba (Campomanesia xanthocarpa Berg): Characterization and Rheological Properties. Food Chemistry, 263, 292–299.

Barbosa-Cánovas, G., Ibarz, A., & Peleg, M. (1993). Propiedades reológicas de alimentos fluidos. Revisión Alimentaria, 241, 39–89.

Bustamante, R., Oblitas, J., & Rojas, E. (2016). Influence of temperature and concentration on the rheological behavior of concentrated aguaymanto pulp (Physalis peruviana L.). Agroindustrial Science, 1(1), 37–43.

Castro, J. C., Maddox, J. D., & Imán, S. A. (2018). Camu-camu—Myrciaria dubia (Kunth) McVaugh. Exotic Fruits, 97–105.

Cunha-Santos, E. C. E., Viganó, J., Neves, D. A., Martínez, J., & Godoy, H. T. (2019). Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Research International, 115, 160–166.

Dak, M., Verma, R. C., & Jaaffrey, S. N. A. (2007). Effect of temperature and concentration on Rheological properties of “Kesar” mango juice. Journal of Food Engineering, 80(4), 1011–1015.

Diamante, L., & Umemoto, M. (2015). Rheological Properties of Fruits and Vegetables: A Review, International Journal of Food Properties, 18(6), 1191–1210.

dos Santos, R. M. B., Chagas, P. C., Rocha, J. H. de M. V., Chagas, E. A., Panduro, M. H. P., Lozano, R. M. B., Rodriguez, C. A., Lozano, R. M. B., & Rodriguez, C. A. (2018). Camu-camu production chain (Myrciaria dubia (Kunth) Mc Vaugh): The case of the producing regions of Loreto and Ucayali, Peruvian Amazon. Interciencia, 43(4), 261–268.

Gomathy, K., Thangavel, K., Balakrishnan, M., & Kasthuri, R. (2015). Effect of Ohmic Heating on the Electrical Conductivity, Biochemical and Rheological Properties of Papaya Pulp. Journal of Food Process Engineering, 38(4), 405–413.

Gunjal, B. B., & Waghmare, N. J. (1987). Flow characteristics of pulp, juice and nectar of “Baneshan” and “Neelum” mangoes. Journal of Food Science and Technology, 24(1), 20–23.

Jimenez, G., & Duran, L. (1979). Propiedades reologicas de productos derivados de frutas y tomate. Revista de Agroquımica Y Tecnologia de Alimentos, 19, 203–216.

Lewis, M. J. (1993). Propiedades físicas de los alimentos y de los sistemas de procesado. Editorial Acribia S.A.

Lombraña, J. I., & Días, J. M. (1985). Rheological and Chemical Changes in Stored Carrot Juice. Canadian Institute of Food Science and Technology Journal, 18(3), 213–219.

Matos-Chamorro, A., & Aguilar-Alata, D. (2010). Influencia de la Temperatura y Concentración sobre el Comportamiento Reológico de la Pulpa de Tuna (Opuntia ficus Indica). Revista de Investigación En Ciencia y Tecnología de Alimentos, 1(1), 58-65.

Neves, L. C., Silva, V. X. da, Pontis, J. A., Flach, A., & Roberto, S. R. (2015). Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia (H.B.K.) Mc Vaugh] fruits. Scientia Horticulturae, 186, 223–229.

Obregón-La Rosa, A. J., Augusto Elías-Peñafiel, C. C., Contreras-López, E., Arias-Arroyo, G. C., Bracamonte-Romero, M., Obregón-La Rosa, A. J., Augusto Elías-Peñafiel, C. C., Contreras-López, E., Arias-Arroyo, G. C., & Bracamonte-Romero, M. (2021). Características fisicoquímicas, nutricionales y morfológicas de frutas nativas. Revista de Investigaciones Altoandinas, 23(1), 17–25.

Rao, M. A., Cooley, H. J., Nogueira, J. N., & McLellan, M. R. (1986). Rheology of Apple Sauce: Effect of Apple Cultivar, Firmness, and Processing Parameters. Journal of Food Science, 51(1), 176–179.

Salehi, F. (2020). Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. Journal of Food Measurement and Characterization, 14(5), 2472–2488.

Santos, I. L., Miranda, L. C. F., da Cruz Rodrigues, A. M., da Silva, L. H. M., & Amante, E. R. (2022). Camu-camu [Myrciaria dubia (HBK) McVaugh]: A review of properties and proposals of products for integral valorization of raw material. Food Chemistry, 372, 131290.

Shinwari, K. J., & Rao, P. S. (2020). Development of a reduced-calorie high pressure processed sapodilla (Manilkara zapota L.) jam based on rheological, textural, and sensory properties. Journal of Food Science, 85(9), 2699–2710.

Silva, F. C. da, Guimarães, D. H. P., & Gasparetto, C. A. (2005). Reologia do suco de acerola: efeitos da concentração e temperatura. Food Science and Technology, 25(1), 121–126.

Published

2022-12-19

How to Cite

del Águila Cifuentes, D. ., Leandro Laguna, C. ., Bazán-Colque, R. J. ., & Basilio Atencio, J. E. . (2022). Effect of concentration and temperature on the rheological behavior of camu-camu pulp. Agroindustrial Science, 12(3), 245-251. https://doi.org/10.17268/agroind.sci.2022.03.02

Issue

Section

Artículos de investigación