The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
DOI:
https://doi.org/10.17268/sel.mat.2023.02.05Palabras clave:
unit Euclidean space, (r, s)-linear Weingarten hypersurfaces, upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0, strong stability, geodesic spheresResumen
In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.
Citas
Alías L J, Brasil Jr. A, Perdomo O. On the stability index of hypersurfaces with constant mean curvature in spheres. Proc. American Math. Soc. 2007; 135:3685–3693.
Aquino CP, Batista M, De Lima HF. On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces. Adv. Geom. 2018; 18:425–430.
Aquino CP, Batista M, De Lima HF. On the umbilicity of generalized linearWeingarten spacelike hypersurfaces in a Lorentzian space form. J. Geom. Phys. 2019; 237:228–236.
Aquino CP, De Lima HF. On the rigidity of constant mean curvature complete vertical graphs in warped products. Diff. Geom. Appl. 2011; 29:590–596.
Aquino CP, De Lima HF, Velásquez MAL. A new characterization of complete linear Weingarten hypersurfaces in real space forms. Pacific J. Math. 2013; 261:33–43.
Aquino CP, De Lima HF, Velásquez MAL. Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms. Michigan Math. J. 2014; 63:27–40.
Aquino CP, De Lima HF, Velásquez MAL. Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. Glasgow Math. J. 2015; 57:653–663.
Barbosa JLM, Colares AG. Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 1997; 15:277-297.
Barbosa JLM, Do Carmo MP, Eschenburg J. Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 1988; 197:123–138.
Barros A, Sousa P. Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 2009; 137:3105–3114.
Chavel I. Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984.
Chen H, Wang X. Stability and eigenvalue estimates of linearWeingarten hypersurfaces in a sphere. J. Math. Anal. Appl. 2013; 397:658–670.
Cheng SY, Yau ST. Hypersurfaces with constant scalar curvature. Math. Ann. 1977; 225:195–204.
Da Silva JF, De Lima HF, Velásquez MAL. Stability of generalized linearWeingarten hypersurfaces immersed in the Euclidean space. Publ. Mat. 2018; 62:95–111.
De Lima EL. A short note on a class of Weingarten hypersurfaces in Rn+1. Geom. Dedic. 2021; 213:283–293.
De Lima HF. Complete linear Weingarten hypersurfaces immersed in the hyperbolic space. J. Math. Soc. Japan. 2014; 66:415-423.
De Lima HF, De Sousa AF, Velásquez MAL. Strongly stable linearWeingarten hypersurfaces immersed in the hyperbolic space. Mediterr. J. Math. 2016; 13:2147–2160.
Dos Santos FR, De Lima HF. A Liebmann type theorem for linearWeingarten surfaces. Rend. Circ. Mat. Palermo, II. Ser. 2018; 67:87–91.
Montiel S. Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 1999; 48:711–748.
Reilly R. Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Diff. Geom. 1973; 8:465–477.
Velásquez MAL. A half-space property for strongly 1-stable hypersurfaces with constant second mean curvature in the euclidean sphere. Houston J. Math. 2021; 47: 151–164.
Velásquez MAL. A half-space type property in the Euclidean sphere. Arch. Math. 2022; 58:49–63.
Velásquez MAL, De Sousa AF, De Lima HF. On the stability of hypersurfaces in space forms. J. Math. Anal. Appl. 2013; 406:134–146.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Selecciones Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative CommonsAtribución 4.0 Internacional (CC BY 4.0) , que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado(Consultar: efecto del acceso abierto).