The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces
DOI:
https://doi.org/10.17268/sel.mat.2023.02.05Palavras-chave:
unit Euclidean space, (r, s)-linear Weingarten hypersurfaces, upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0, strong stability, geodesic spheresResumo
In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.
Referências
Alías L J, Brasil Jr. A, Perdomo O. On the stability index of hypersurfaces with constant mean curvature in spheres. Proc. American Math. Soc. 2007; 135:3685–3693.
Aquino CP, Batista M, De Lima HF. On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces. Adv. Geom. 2018; 18:425–430.
Aquino CP, Batista M, De Lima HF. On the umbilicity of generalized linearWeingarten spacelike hypersurfaces in a Lorentzian space form. J. Geom. Phys. 2019; 237:228–236.
Aquino CP, De Lima HF. On the rigidity of constant mean curvature complete vertical graphs in warped products. Diff. Geom. Appl. 2011; 29:590–596.
Aquino CP, De Lima HF, Velásquez MAL. A new characterization of complete linear Weingarten hypersurfaces in real space forms. Pacific J. Math. 2013; 261:33–43.
Aquino CP, De Lima HF, Velásquez MAL. Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms. Michigan Math. J. 2014; 63:27–40.
Aquino CP, De Lima HF, Velásquez MAL. Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. Glasgow Math. J. 2015; 57:653–663.
Barbosa JLM, Colares AG. Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 1997; 15:277-297.
Barbosa JLM, Do Carmo MP, Eschenburg J. Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 1988; 197:123–138.
Barros A, Sousa P. Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 2009; 137:3105–3114.
Chavel I. Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984.
Chen H, Wang X. Stability and eigenvalue estimates of linearWeingarten hypersurfaces in a sphere. J. Math. Anal. Appl. 2013; 397:658–670.
Cheng SY, Yau ST. Hypersurfaces with constant scalar curvature. Math. Ann. 1977; 225:195–204.
Da Silva JF, De Lima HF, Velásquez MAL. Stability of generalized linearWeingarten hypersurfaces immersed in the Euclidean space. Publ. Mat. 2018; 62:95–111.
De Lima EL. A short note on a class of Weingarten hypersurfaces in Rn+1. Geom. Dedic. 2021; 213:283–293.
De Lima HF. Complete linear Weingarten hypersurfaces immersed in the hyperbolic space. J. Math. Soc. Japan. 2014; 66:415-423.
De Lima HF, De Sousa AF, Velásquez MAL. Strongly stable linearWeingarten hypersurfaces immersed in the hyperbolic space. Mediterr. J. Math. 2016; 13:2147–2160.
Dos Santos FR, De Lima HF. A Liebmann type theorem for linearWeingarten surfaces. Rend. Circ. Mat. Palermo, II. Ser. 2018; 67:87–91.
Montiel S. Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 1999; 48:711–748.
Reilly R. Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Diff. Geom. 1973; 8:465–477.
Velásquez MAL. A half-space property for strongly 1-stable hypersurfaces with constant second mean curvature in the euclidean sphere. Houston J. Math. 2021; 47: 151–164.
Velásquez MAL. A half-space type property in the Euclidean sphere. Arch. Math. 2022; 58:49–63.
Velásquez MAL, De Sousa AF, De Lima HF. On the stability of hypersurfaces in space forms. J. Math. Anal. Appl. 2013; 406:134–146.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Selecciones Matemáticas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores que publicam nesta revista aceitam as seguintes condições:
Os autores mantêm os direitos autorais e atribuem à revista o direito da primeira publicação, com o trabalho registrado com a licença de atribuição Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite que terceiros usem o material publicado sempre que mencionarem a autoria do trabalho e os direitos autorais. Primeira publicação nesta revista.
Os autores podem fazer outros acordos contratuais independentes e adicionais para a distribuição não exclusiva da versão do artigo publicada nesta revista (por exemplo, incluí-la em um repositório institucional ou publicá-la em um livro), desde que afirme claramente que o trabalho Foi publicado nesta revista.
É permitido e recomendado aos autores que publiquem seus trabalhos na Internet (por exemplo, em páginas institucionais ou pessoais) antes e durante o processo de revisão e publicação, pois isso pode levar a trocas produtivas e a uma disseminação maior e mais rápida do trabalho. publicado (Consultar: efeito do acesso aberto).