On the index of stability of (r, s)-linear Weingarten Clifford tori

Authors

  • Marco Antonio Lázaro Velásquez Departamento de Matemática, Universidade Federal de Campina Grande 58.109-970, Campina Grande, Paraíba, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2023.01.10

Keywords:

Unit Euclidean sphere, higher order mean curvatures, (r, s)-linear Weingarten Clifford torus, Jacobi operator, index of (r, s)-stability

Abstract

For entire numbers r and s satisfying 0 ≤ r ≤ s ≤ n − 2, we showed that the index of (r, s)-stability of a (r, s)-linear Weingarten Clifford torus immersed into the (n + 1)-dimensional unit Euclidean sphere, that has a linear combination of their higher order mean curvatures Hr+1 and Hs+1 being null, is exactly equal to n + 3 provided that a geometric condition involving Hr+2 and Hs+2 is satisfied.

References

Aquino CP, Batista M , De Lima HF. On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces . Adv. Geom. 2018; 18(4):425-430.

Aquino CP, Batista M and De Lima HF. On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form, J. Geom. Phys. 2019; 137:228-236.

Aquino CP, De Lima HF, Velásquez MA L. A new characterization of complete linear Weingarten hypersurfaces in real space forms, Pacific J. Math. 2013; 261:33-43.

Aquino CP, De Lima HF, Velásquez MA L. Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms, Michigan Math. J. 2014; 63:27-40.

Aquino CP, De Lima HF, Velásquez MA L. Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space, Glasgow Math. J. 2015; 57:653-663.

Barbosa JLM, Colares AG. Stability of Hypersurfaces with Constant r-Mean Curvature, Ann. Global Anal. Geom. 1997; 15:277-297.

Barbosa JLM, Do Carmo MP , Eschenburg J. Stability of Hypersurfaces with Constant Mean Curvature in Riemannian Manifolds, Math. Z. 1988; 197:123-138.

Barros A , Sousa P. Estimate for index of closed minimal hypersurfaces in spheres, Kodai Math. J. 2009; 32:442-449.

Barros A , Sousa P. Estimate for index of hypersurfaces in spheres with null higher order mean curvature, Monatsh. Math. 2010; 160:227-241.

Chavel I. Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984.

Chen H , Wang X. Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere, J. Math. Anal. Appl. 2013; 397:658-670.

Cheng SY , Yau ST. Hypersurfaces with constant scalar curvature, Math. Ann. 1977; 225:195-204.

Da Silva JF, De Lima HF , Velásquez MA L. Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space, Publ. Mat. 2018; 62(1):95-111.

De Lima EL. A short note on a class of Weingarten hypersurfaces in Rn+1, Geom. Dedicata. 2021; 213:283-293.

De Lima EL, De Lima HF and Aquino CP. Sharp height estimate in Lorentz-Minkowski space revisited, Bull. Belg. Math. Soc. Simon Stevin. 2018; 25(1):29-38.

De Lima HF. Complete linear Weingarten hypersurfaces immersed in the hyperbolic space,

J. Math. Soc. Japan. 2014; 66:415-423.

De Lima HF, De Sousa AF , Velásquez Marco AL. Strongly stable linear Weingarten hypersurfaces immersed in the hyperbolic space, Mediterr. J. Math. 2016; 13:2147-2160.

Dos Santos FR , De Lima HF. A Liebmann type theorem for linear Weingarten surfaces,

Rend. Circ. Mat. Palermo, II. Ser. 2018; 67:87-91.

El Soufi A. Applications harmoniques, immersions minimales et transformations conformes de la sphére, Compositio Math. 1883; 85:281-298.

Reilly R. Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 1973; 8:465-477.

Rosenberg H. Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 1993; 117:217-239.

Simons J. Minimal varieties in Riemannian manifolds, Ann. Math. 1968; 88:62-105.

Velásquez MA L, De Sousa AF , De Lima HF. On the stability of hypersurfaces in space forms, J. Math. Anal. Appl. 2013; 406:134-146.

Downloads

Published

2023-07-26

How to Cite

Lázaro Velásquez, M. A. (2023). On the index of stability of (r, s)-linear Weingarten Clifford tori. Selecciones Matemáticas, 10(01), 102 - 113. https://doi.org/10.17268/sel.mat.2023.01.10