The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces

Authors

  • Marco Antonio Lázaro Velásquez Departamento de Matemática, Universidade Federal de Campina Grande 58.109-970, Campina Grande, Paraíba, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2023.02.05

Keywords:

unit Euclidean space, (r, s)-linear Weingarten hypersurfaces, upper (lower) domain enclosed by the geodesic sphere of unit Euclidean space of level τ0, strong stability, geodesic spheres

Abstract

In the unit Euclidean sphere Sn+1, we deal with a class of hypersurfaces that were characterized in [23] as the critical points of a variational problem, the so-called (r, s)-linear Weingarten hypersurfaces (0 ≤ r ≤s ≤ n−1); namely, the hypersurfaces of Sn+1 that has a linear combination arHr+1+・ ・ ・+asHs+1 of their higher order mean curvatures Hr+1 and Hs+1 being a real constant, where ar, . . . , ar are nonnegative real numbers (with at least one non zero). By assuming a geometric constraint involving the higher order mean curvatures of these hypersurfaces, we prove a uniqueness result for strongly stable (r, s)-linear Weingarten hypersurfaces immersed in a certain region determined by a geodesic sphere of Sn+1. We also establish a nonexistence result in another region of Sn+1 for strongly stable Weingarten (r, s)-linear hypersurfaces.

References

Alías L J, Brasil Jr. A, Perdomo O. On the stability index of hypersurfaces with constant mean curvature in spheres. Proc. American Math. Soc. 2007; 135:3685–3693.

Aquino CP, Batista M, De Lima HF. On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces. Adv. Geom. 2018; 18:425–430.

Aquino CP, Batista M, De Lima HF. On the umbilicity of generalized linearWeingarten spacelike hypersurfaces in a Lorentzian space form. J. Geom. Phys. 2019; 237:228–236.

Aquino CP, De Lima HF. On the rigidity of constant mean curvature complete vertical graphs in warped products. Diff. Geom. Appl. 2011; 29:590–596.

Aquino CP, De Lima HF, Velásquez MAL. A new characterization of complete linear Weingarten hypersurfaces in real space forms. Pacific J. Math. 2013; 261:33–43.

Aquino CP, De Lima HF, Velásquez MAL. Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms. Michigan Math. J. 2014; 63:27–40.

Aquino CP, De Lima HF, Velásquez MAL. Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. Glasgow Math. J. 2015; 57:653–663.

Barbosa JLM, Colares AG. Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 1997; 15:277-297.

Barbosa JLM, Do Carmo MP, Eschenburg J. Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 1988; 197:123–138.

Barros A, Sousa P. Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 2009; 137:3105–3114.

Chavel I. Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984.

Chen H, Wang X. Stability and eigenvalue estimates of linearWeingarten hypersurfaces in a sphere. J. Math. Anal. Appl. 2013; 397:658–670.

Cheng SY, Yau ST. Hypersurfaces with constant scalar curvature. Math. Ann. 1977; 225:195–204.

Da Silva JF, De Lima HF, Velásquez MAL. Stability of generalized linearWeingarten hypersurfaces immersed in the Euclidean space. Publ. Mat. 2018; 62:95–111.

De Lima EL. A short note on a class of Weingarten hypersurfaces in Rn+1. Geom. Dedic. 2021; 213:283–293.

De Lima HF. Complete linear Weingarten hypersurfaces immersed in the hyperbolic space. J. Math. Soc. Japan. 2014; 66:415-423.

De Lima HF, De Sousa AF, Velásquez MAL. Strongly stable linearWeingarten hypersurfaces immersed in the hyperbolic space. Mediterr. J. Math. 2016; 13:2147–2160.

Dos Santos FR, De Lima HF. A Liebmann type theorem for linearWeingarten surfaces. Rend. Circ. Mat. Palermo, II. Ser. 2018; 67:87–91.

Montiel S. Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 1999; 48:711–748.

Reilly R. Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Diff. Geom. 1973; 8:465–477.

Velásquez MAL. A half-space property for strongly 1-stable hypersurfaces with constant second mean curvature in the euclidean sphere. Houston J. Math. 2021; 47: 151–164.

Velásquez MAL. A half-space type property in the Euclidean sphere. Arch. Math. 2022; 58:49–63.

Velásquez MAL, De Sousa AF, De Lima HF. On the stability of hypersurfaces in space forms. J. Math. Anal. Appl. 2013; 406:134–146.

Downloads

Published

2023-12-27

How to Cite

Lázaro Velásquez, M. A. (2023). The region of the unit Euclidean sphere that admits a class of (r,s)-linear Weingarten hypersurfaces. Selecciones Matemáticas, 10(02), 285 - 298. https://doi.org/10.17268/sel.mat.2023.02.05