Una nota sobre transitividad de transformaciones crecientes a trozos sobre R
DOI:
https://doi.org/10.17268/sel.mat.2022.01.11Palavras-chave:
Funciones transitivas, funciones crecientes por partes, asíntota verticalResumo
En este trabajo se demuestra una condición suficiente para obtener transitividad en las familias funciones crecientes por partes con una discontinuidad inevitable en x=0. Concretamente, se demuestra que las características de una clase amplia de transformaciones de la recta real con una discontinuidad en x=0, crecientes y continuas para que sean transitivas (poseer una órbita densa), son las siguientes: f no posee puntos fijos, f tiene una asíntota vertical en x=0 y la preimagen de cero es distinta de vacío. En particular, la famosa transformación de Boole junto a algunas de sus parametrizaciones poseen estas características.
Como caso particular, para la familia a un parámetro de hipérbolas, se determina explícitamente su comportamiento dinámico según los valores del parámetro.
Referências
Aaronson J. The eigenvalues of non-singular transformations, Israel J. Math. 1983; 45:297-312. https://doi.org/10.1007/BF02804014
Aaronson J. An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs of the Amer. Math. Soc., Vol 50. 1997.
Adler R, Weiss B. The ergodic infinite measure preserving transformation of Boole, Israel J. Math. 1973; 16:263-278. https://link.springer.com/article/10.1007/BF02756706
Bayless RL. Ergodic Properties of Rational Functions that Preserve Lebesgue Measure on R. Real Analysis Exchange. 2018; Vol. 43(1):137-153. https://doi.org/10.14321/realanalexch.43.1.0137.
Blackmore D, Golenia J, Prykarpatsky AK, et al. Invariant measures for discrete dynamical systems and ergodic properties of generalized Boole-type transformations. Ukr Math J. 2013; 65:47. https://doi.org/10.1007/s11253-013-0764-z
Bonanno C, Giulietti P, Lenci M. Global-local mixing for the Boole map, Chaos, Solitons & Fractals. 2018; 111:55-61. https://doi.org/10.1016/j.chaos.2018.03.020
Leal B, Mata G, Muñoz S. Families of Transitive Maps on R With Horizontal Asymptotes. Rev. de la Unión Matemática Argentina (REVUMA). 2018; 58(2):375-387. http://www.inmabb.criba.edu.ar/revuma/pdf/v59n2/v59n2a08.pdf
Letac G. Which Functions Preserve Cauchy Laws?. Proc. Amer. Math. Soc.1977; 67(2):277–286. https://www.jstor.org/stable/2041287
Li T, Schweiger F. The Generalized Boole’s Transformation is ergodic, Manuscripta Math. 1971; 25:161-167. https://doi.org/10.1007/BF01168607
Muñoz S. Robust transitivity and ergodicity of transformations of the real line and the real plane[PhD Thesis], IMPA; 2006. Available at https://preprint.impa.br/visualizar?id=5651
Muñoz S. Robust transitivity of maps of the real line. Discrete and Continuous Dynamical Systems. Series A. 2015; 35(3):1163-1177. avilable at http://aimsciences.org//article/id/807e52c6-a741-470c-b708-1cd668ecc7cb
Neuwirth JH. Ergodicity of some mapping of the circle and the line. Israel J. Math. 1978; 31:359-367.
Prykarpatsky AK, Feldman J. On the ergodic and spectral properties of generalied Boole transformations. I. Miskolc Math. Notes. 2006; 7(1):91-99. http://real.mtak.hu/87439/1/128.pdf
Umento K, Okubo K. Exact Lyapunov exponents of the generalized Boole transformations. Prog. Theor. Exp. Phys. 2016; 021A01. https://doi.org/10.1093/ptep/ptv195
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Selecciones Matemáticas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores que publicam nesta revista aceitam as seguintes condições:
Os autores mantêm os direitos autorais e atribuem à revista o direito da primeira publicação, com o trabalho registrado com a licença de atribuição Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite que terceiros usem o material publicado sempre que mencionarem a autoria do trabalho e os direitos autorais. Primeira publicação nesta revista.
Os autores podem fazer outros acordos contratuais independentes e adicionais para a distribuição não exclusiva da versão do artigo publicada nesta revista (por exemplo, incluí-la em um repositório institucional ou publicá-la em um livro), desde que afirme claramente que o trabalho Foi publicado nesta revista.
É permitido e recomendado aos autores que publiquem seus trabalhos na Internet (por exemplo, em páginas institucionais ou pessoais) antes e durante o processo de revisão e publicação, pois isso pode levar a trocas produtivas e a uma disseminação maior e mais rápida do trabalho. publicado (Consultar: efeito do acesso aberto).