Modelo y método difuso para la planificación de la fertilización agrícola

Autores/as

  • Edmundo Ruben Vergara Moreno Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú. http://orcid.org/0000-0002-6868-7211
  • Cristhian Neyra Salvador Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2021.02.13

Palabras clave:

Optimización lineal difusa, fertilización agrícola, costos difusos, restricciones difusas

Resumen

Se utilizó la teoría de conjuntos difusos para la modelación y los métodos de la optimización difusa para la solución del problema de abonamiento y fertilización de terrenos agrícolas considerando las restricciones y los costos difusos. Se propuso un método de solución basado en las propuestas de Lai-Hwang, Léberling y Verdegay. La metodología transforma un problema con un objetivo difuso en un problema de optimización multi-objetivo, éstas en metas difusas y finalmente se utiliza alfa-corte para transformar en un problema clásico. Se ilustra el método con un ejemplo. La solución que se obtiene es una terna que representa a un número difuso, que proporciona mayor flexibilidad al decisor.

Biografía del autor/a

Cristhian Neyra Salvador, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú.

Bachiller en Ciencias Físicas y Matemáticas

Citas

Aguilar-Acuña J, Grageda-Cabrera OA, Vuelvas-Cisneros MA, Martinez-Hernández M, Solis-Moya E, Medina-Cázares T, Ramírez-Ramírez A. Eficiencia de Fertilizantes aplicados con fertirriego en Chile Ancho. Agricultura Técnica en México; 2005; 31(2): 177-189.

Brunelli M, Mezei J. How different are ranking methods for fuzzy numbers?: A numerical study. Int. J. of Approximate Reasoning; 2013; 54: 627-639

Campos CR. Efecto de la fertilización en el rendimiento y características biométricas del cultivo de papa variedad huayro en la comunidad de Aramachay (Valle del mantaro). Tésis de título. Universidad Nacional Agraria la Molina. Lima Perú. 2014.

Cao S, Zhou W, Wang F, Luo S, Deng R, Xie T. Development and promotion of expert information system on rice soil testing and formulated fertilization in Dong’an County. Agriculture Network Information 09; 2015.

Carvajal-Muñoz JS, Mera-Benavides AC. Fertilización biológica: técnicas de vanguardia para el desarrollo agrícola sostenible. Producción+Limpia; 2010; 5(2):77-96.

Dubey D, Chandra S, Mehra A. Fuzzy linear programming under interval uncertainty based on IFS representation. Fuzzy Sets and Systems; 2012; 188(1):68-87.

Echevarría HE, García FO. Fertilidad de suelos y fertilización de cultivos. Ediciones INTA, Buenos Aires, Argentina. 2005.

Egúsquiza R, Catalán W. Guía Técnica, curso taller, Manejo Integrado de Papa. Universidad Agraria la Molina, Lima, Perú. 2011.

Elferjani R, DesRochers A, Tremblay F. DRIS-based fertilization efficiency of young hybrid poplar plantations in the boreal region of Canada. New Forests; 2013; 44(4):487-508.

Ezzati R, Allahviranloo T, Khezerloo S, Khezerloo M. An approach for ranking of fuzzy numbers. Expert Systems with Applications; 2012; 39(1):690-695.

Ezzati R, Khorram E, Enayati R. A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. App. Math. Modelling; 2015; 39(12):3183-3193.

Ferro D, Pellegrini A, Chamorro A, Bezuz R, Golik S. Balance simplificado de nutrientes del suelo en secuencias trigo/soja2da y colza/soja2da. Acta de XXV Congreso Argentino de la Ciencia del Suelo. 2016; pp. 18.

Garc´ıa B, Pantoja C. Fertilizaci´on del cultivo de la papa en el departamento de Mari˜no. En fertilizaci´on de cultivos en clima fr´ıo. Guerrero R. Editor. Bogot´a; 1998; 7-27.

Giletto CM, Magnoni JM, Echevarría HE. Fertilización con azufre en el cultivo de papa (Solanum tuberosum L.) para la industria en el sudeste Bonaerense. Revista Ciencia del Suelo; 2012; 30(1):75-84.

Hernández JC. Edafología y fertilidad. Universidad Nacional Abierta y a Distancia. Bogotá, Colombia. 2013.

Lai YJ, Hwang CL. A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems; 1992; 49(2):121-133.

Leberling H. On finding compromise solutions in multicriterial problems using the fuzzy min operator. Fuzzy Sets and Systems; 1981; 6(2): 105-118.

Liang D, Liu D, Pedrycz W, Hu P. Triangular fuzzy decision theoretic rough sets. Int. J. of Approximate Reasoning; 2013; 54(8):1087-1106.

Li DF, Wan SP Fuzzy linear programming approach to multiattribute decision making with multiple types of attribute values and incomplete weight information. Applied Soft Computing; 2013; 13(11):4333-4348.

Liu T, Li T, Wang Y, Zhang X, Zheng Z. Design and application of fertilization information system for farmland of village scale. Bull. of Soil and Water Conservation; 2015; 03

Luenberger D, Ye Y. Linear and Nonlinear Programming. Int. Series in Operations Research and Management Science 228, Springer US, New York, USA. 2016.

Luhandjula MK. Fuzzy optimization. Fuzzy Sets and Systems; 2015; 274(C):4-11.

Luo MY. Calculation of theoretical model on balanced fertilization in soil. Adv. Materials Research; 2013; 610-613:2931-2936.

Niquín-Alayo E, Vergara-Moreno E, Calderón-Niquín M. FERTIDIF: Software para la planificación de fertilización agrícola basado en optimización lineal con costos difusos. Scienctia Agropecuaria; 2018; 9(1):103-112.

Pelta DA, Verdegay JL, Cadenas JM. Introducing SACRA: A Decision support. Applied Decision Support with Soft Computing; 2012; 124: 391-401.

SAGARPA (Secretaría de agricultura, Ganadería, Desarroca y Alimentación, de Estados Unidos de México). Ficha técnica del cultivo de la Caña de azúcar. México. 2015.

Sakawa M, Yano H, Nishizaki I. Linear and Multiobjective Programming with Fuzzy Stochastic Extensions. Int. Series in Operations Research & Decision Theory 203, Springer, New York. USA. 2013.

Sifuentes E, Ojeda W, Mendoza C, Macías J, Rúelas J, Inzunza A. Nutrición del cultivo de papa (solanum tuberosumL.) considerando variabilidad climática en el Valle del Fuerte Sinaloa, México. Rev. Mexicana de Ciencias Agrícolas; 2013; Vol. 4 (4):585-597.

Suñer LG, Galantini JA. Fertilización fosforada en suelos cultivados con trigo de la región sudoeste papeana. Rev. Ciencia del Suelo; 2012; 30(1):57-66.

Tanaka H, Ichihashi H, Asai K. A formulation of fuzzy linear programing problems basad on comparison of fuzzy numbers Control and Cybernetic;1984; 13:185-194.

Vanderbei R. Linear programming, foundations and extensions. Int. Series in Operations Research and Management Science 196, Springer US, New York, USA. 2014.

Verdegay JL. Fuzzy mathematical programming. En Gupta MM, Sanchez E. eds. Approximate Reasoning in Decision Analysis. Amsterdam - North-holland. 1984.

Vergara-Moreno E, Rodríguez-Novoa F, Saavedra-Sarmiento H. Métodos de optimización lineal difusa para la planificación nutricional en granjas avícolas. Mosaico Científico; 2006; 3:16-29.

Wang J, Nie R, Zhang H, Chen X. New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Information Sciences; 2013; 251(1):79-95.

Yingjie L, Xiaoqin Z, Youhua M, Mingan Z, Juan Z, Nan S. Review on Application of information technology in soil testing and formulated fertilization. Agriculture Network Information; 2010; 2:11.

Yuan C, Li D, Li Y. Application of BP neural network base on MapReduce in precision fertilization. J. of Chinese Agricultural Mechanization; 2016; 02.

Zimmermann HJ. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems; 1978; 1(1):45-55.

Descargas

Publicado

2021-12-27

Cómo citar

Vergara Moreno, E. R., & Neyra Salvador, C. (2021). Modelo y método difuso para la planificación de la fertilización agrícola. Selecciones Matemáticas, 8(02), 370-378. https://doi.org/10.17268/sel.mat.2021.02.13