Sobre un problema de vibración de cuerda homogénea

Autores/as

  • Rodiak N. Figueroa-López Department of Mathematics, Universidade Estadual Paulista (UNESP), Rua Cristóvao Colombo, 2265, Sao José do Rio Preto, SP, CEP: 15054-000, Brazil.
  • Germán Lozada-Cruz Department of Mathematics, Universidade Estadual Paulista (UNESP), Rua Cristóvao Colombo, 2265, Sao José do Rio Preto, SP, CEP: 15054-000, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2018.01.01

Palabras clave:

Ecuación de la onda, Análisis espectral, Sistema conservativo, Estabilidad exponencial

Resumen

En este artículo estudiamos la existencia y unicidad de la solución débil de un modelo matemático que describe la vibración de una cuerda. Este modelo está dado por una ecuación de onda con condiciones de frontera dinámicas. También, mostramos que este modelo es conservativo pero no es exponencialmente  estable.

Citas

Brézis, H. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

Brézis, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1973.

Binding, P.A.; Browne, P.J. & Seddighi, K. Sturm-Liouville problems with eigenparameter dependent boundary conditions. Proceedings of the Edinburgh Mathematical Society 37.1 (1994), pp. 57–72.

Bitsadze, A.V. and Kalinichenko, D.F. A Collection of Problems on the Equations of Mathematical Physics, MIR Publishers, Moscow, 1980.

Grobbelaar-van Dalsen, M. On fractional powers of a closed pair of operators and a damped wave equation with dynamic boundary conditions. Appl. Anal. 53 (1994), no. 1-2, pp. 41–54.

Gulmamedov, V.Y. and Mamedov, Kh.R. On basis property for a boundary - value problem with a spectral parameter in the boundary condition. Journal of Arts and Sciences 5 (2006), pp. 9–17.

Huang, F.L. Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. of Diff. Eqs (1985), no. 1, pp. 43–56.

Kapustin, N.Yu. and Moiseev, E.I. A remark on the convergence problem for spectral expansions corresponding to a classical problem with a spectral parameter in the boundary condition. Differential Equations 37 (2001), no. 12, pp. 1677–1683.

Kerimov, N.B. and Mirzoev, V.S. On the basis properties of one spectral problem with a spectral parameter in a boundary condition. Siberian Mathematical Journal 44 (2003), no. 5, pp. 813–816.

Meurer, T. and Kugi, A. Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator. Int. J. Robust Nonlinear Control 21 (2011), pp. 542–562.

Pazy, A. Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.

Pellicer, M. and Solá-Morales, J. Analysis of a viscoelastic spring-mass model. J. Math. Anal. Appl., 294 (2004), pp. 687–698.

Pellicer, M. and Sol`a-Morales, J. Spectral analysis and limit behaviours in a spring-mass system. Commun. Pure Appl. Anal. 7(2008), no. 3, pp. 563–577.

Tikhonov, A. and Samarskii, A. Equations of Mathematical Physics. Courier Corporation, New York, 2013.

Publicado

2018-07-27

Cómo citar

Figueroa-López, R. N., & Lozada-Cruz, G. (2018). Sobre un problema de vibración de cuerda homogénea. Selecciones Matemáticas, 5(01), 1 - 6. https://doi.org/10.17268/sel.mat.2018.01.01

Número

Sección

Articles