Cocientes de variedades por acciones de grupos reductivos
DOI:
https://doi.org/10.17268/sel.mat.2017.01.03Palabras clave:
variedades, grupos reducidosResumen
Consideramos el anillo de polinomios R = K[x1, . . . , xn] en las variables x1, . . . , xn y coeficientes complejos. El grupo de permutaciones de 1, . . . , n actúa sore R permutando las variables. El conjunto de invariantes por esta acción forma un anillo generado por los polinomios simétricos elementales. Emmy Noether prueba que si un grupo finito de matrices inversibles G ⊂ GL(n; k) actúa sobre R, entonces el anillo de invariantes es generado por un número finito de invariantes homogéneos y define un operador en G para obtener polinomios invariantes. Existen relaciones algebraicas entre los generadores del anillo de invariantes y las órbitas de Cn/G. En 1963, Masayoshi Nagata demostró que el anillo de los invariantes de los grupos geométricamente reductivos es finitamente generado. Analizamos la existencia de una variedad cociente X/G donde G es un grupo algebraico actuando sobre una variedad algebraica X.Citas
Cox David, Little Jhon & O'shea Donald. Ideals, Varieties, and Algorithms, Tercera edición, Springer Science-Business Media, USA.2007.
Fléischmann Peter. On Invariant Theory of Finite Groups, Institut of Mathematics and Statistics. University of Kent at Canterbury. 2006.
Reynoso Claudia. Introducción a la Teoría de Invariantes Geométricos, Departamento de Guanajuato, Guanajuato, México. 2010.
Publicado
Cómo citar
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative CommonsAtribución 4.0 Internacional (CC BY 4.0) , que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado(Consultar: efecto del acceso abierto).