Algebraic quotients and Geometric Invariant Theory

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.01.09

Keywords:

Geometric invariant theory, Hilbert-Mumford criterion

Abstract

The quotient of an algebraic variety by action of an algebraic group does not always has a variety structure. The aim of this work is to describe a methodfor constructing good quotients, in the sense of Geometric invariant theory, in algebraicgeometry.

References

Alcántara C. Introducción a la teoría de invariantes geométricostios. CIMAT: Universidad de Guanajuato; 2010.

Brion M. Introduction to actions of algebraic groups. Les cours du CIRM. 2010; 1:1-22.

Dolgachev I. Lectures on Invariant Theory. London Mathematical Society. Cambridge University Press. Lecture Notes Series 296; 2003.

Haboush W. Reductive Groups are Geometrically Reductive. Annals of Mathematics. Second Series. 1995; 102(1):67–83.

Mukai S, Oxbury W. An introduction to Invariants and Moduli. Cambridge University Press; 2003.

Mumford D, Fogarty J, Kirwan F. Geometric Invariant Theory. Tercera edici´on. Springer; 34; 1994.

Nagata M. Lectures on the Fourteenth Problem of Hilbert. Tata Institute of Fundamental Research; 1965.

Newstead P. Geometric Invariant Theory. CIMAT: Guanajuato; 2006.

Published

2020-07-25

How to Cite

Medina García, N. (2020). Algebraic quotients and Geometric Invariant Theory. Selecciones Matemáticas, 7(01), 108-114. https://doi.org/10.17268/sel.mat.2020.01.09