A theorem about linear rank inequalities that depend on the characteristic of the finite field

Authors

  • Victor Peña-Macias Facultad de Ciencias, Universidad Nacional de Colombia, Colombia.

DOI:

https://doi.org/10.17268/sel.mat.2022.01.12

Keywords:

Mutually complementary vector spaces, Binary matrix, Finite field, Entropy, Linear rank inequality

Abstract

A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, and does not in general hold over other characteristics. In this paper, using as guide binary matrices whose ranks depend on the finite field where they are defined, we show a theorem which explicitly produces characteristic-dependent linear rank inequalities; this theorem generalizes results previously obtained in the literature.

Author Biography

Victor Peña-Macias, Facultad de Ciencias, Universidad Nacional de Colombia, Colombia.

Matemático (2011)

Magíster en Matemáticas (2015)

Candidato a Doctorado en Matemáticas

Universidad Nacional de  Colombia

References

Blasiak A, Kleinberg R, Lubetzky E. Lexicographic Products and the Power of non-Linear Network Coding, IEEE Symposium on Foundations of Computer Science. 2011; 609-618.

Dougherty R, Freiling C, Zeger K. Insufficiency of Linear Coding in Network Information Flow, IEEE Transactions on Information Theory, 2005; 51(8):2745-2759.

Dougherty R, Freiling C, Zeger K. Linear Rank Inequalities on Five or More Variables, ArXiv 0910.0284; 2010.

Dougherty R, Freiling C, Zeger K. Achievable Rate Regions for Network Coding, IEEE Transactions on Information Theory. 2015; 61(5):2488-2509.

Ingleton AW. Representation of Matroids. Combinatorial Mathematics and its Applications, Oxford. 1969; 149-167.

Kinser R. New Inequalities for Subspace Arrangements, Journal Combinatorial Theory Serie A. 2011; 118(1):152-161.

Peña-Macias V, Sarria H. Characteristic-Dependent Linear Rank Inequalities via Complementary Vector Spaces, J. of Information and Optimization Sciences. 2021; 42(2):345-369. DOI: 10.1080/02522667.2019.1668157

Peña-Macias V, Sarria H. Characteristic-Dependent Linear Rank Inequalities in 21 variables, Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2019; 43(169):765-770. https://doi.org/10.18257/raccefyn.928

Peña-Macias V, Sarria H. Linear Programming Problems in Network Coding and Closure Operators via Partitions, Revista Selecciones Matemáticas. 2019; 6(2):269-274. http://dx.doi.org/10.17268/sel.mat.2019.02.12

Shen A, Hammer D, Romashchenko AE, Vereshchagin NK. Inequalities for Shannon Entropy and Kolmogorov Complexity, Journal of Computer and Systems Sciences. 2000; 60:442-464.

Yeung R. A First Course in Information Theory, Springer, Berlin; 2002.

Downloads

Published

2022-07-27

How to Cite

Peña-Macias, V. (2022). A theorem about linear rank inequalities that depend on the characteristic of the finite field. Selecciones Matemáticas, 9(01), 150 - 160. https://doi.org/10.17268/sel.mat.2022.01.12