Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem

Authors

  • Dik D. Lujerio Garcia Departamento Académico de Matemática de la Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, UNASAM, Perú.
  • Newton M. Solórzano Chávez ILACVN - CICN, Universidade Federal da Integracao Latino-Americana, UNILA, Brasil.
  • Marck A. Molina Morales Universidad Nacional Santiago Antúnez de Mayolo, UNASAM, Perú.
  • Bibiano M. Cerna Maguiña Departamento Académico de Matemática de la Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, UNASAM, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2025.01.02

Keywords:

Finsler metric, ε-euclidian metric, Zermelo navigation problem, non-euclidean geometry

Abstract

In this work, the authors perturb the Euclidean plane with a constant vector field of the form W = (0, ε) with 0 ≤ ε < 1, which can be interpreted as wind currents affecting the movement of ships in a constant unidirectional way. It is observed that the resulting perturbed norm, called the ε-Euclidean metric, which is non-reversible, is a Finsler metric. In this way, a new non-Euclidean geometry is introduced. With this, the ε-Euclidean distance is induced and defined. This new way of measuring point-to-point distances can be interpreted, physically, as optimal travel time. Due to the non-reversibility of the ε-Euclidean metric, two types of circumferences are defined and characterized. Distance formulas (or optimal travel time) from point to line, from line to point, and from line to line are obtained, as well as a geometric construction technique for obtaining the distance from a point to a parabola, which can be adapted to other curves that simulate the Edge of a beach. Examples and graphs are presented for a better understanding of the work.

References

Antonelli PL, Miron R. Lagrange and Finsler geometry: applications to physics and biology. vol. 76. Springer Science & Business Media; 2013.

Ángel Javaloyes M, Pendás-Recondo E, Sáchez M. A General Model for Wildfire Propagation with Wind

and Slope. SIAM Journal on Applied Algebra and Geometry. 2023;7(2):414-39. Available from: https://doi.org/10.1137/22M1477866.

Randers G. On an Asymmetrical Metric in the Four-Space of General Relativity. Phys Rev. 1941 Jan;59:195-9. Available from: https://link.aps.org/doi/10.1103/PhysRev.59.195.

Ebbinghaus HD, Peckhaus V. Ernst Zermelo: An approach to His Life and Work. 2nd ed.- Springer Berlin, Heidelberg; 2015.

Bao D, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. J Differential

Geom. 2004;66(3):377 435. Available from: https://projecteuclid.org/

journals/journal-of-differential-geometry/volume-66/issue-3/

Zermelo-navigation-on-Riemannian-manifolds/10.4310/jdg/1098137838.full.

León V, Solórzano Chávez NM, Mosquera Mosquera JE, Maganin J. Cónicas nas metricas da soma

e do Máximo. Revista Sergipana de Matemática e Educacao Matemática. 2025 abr;10(1):24–51. Available from: https://periodicos.ufs.br/ReviSe/article/view/21114.

So S. Recent Developments in Taxicab Geometry. CUBO, A Mathematical Journal. 2002 Jun;4(2):75–92. Available from: https://cubo.ufro.cl/index.php/cubo/article/view/1785.

de Oliveira Rufino E, Pontes Diógenes RJ. As Cónicas na geometria exponencial. Intermaths.

dez;4(2):224-44. Available from: https://periodicos2.uesb.br/index.php/intermaths/article/view/13635.

Chávez NMS, León VAM, Sosa LGQ, Moyses JR. Um problema de navegacao de Zermelo: Métrica de Funk. REMAT: Revista Eletrónica da Matemática. 2021;7(1):e3010. Available from: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4574.

Chávez NMS, Moyses JR, León VAM. Sobre as parábolas de Funk. REMAT: Revista Eletrónica da Matemática. 2024;10(1):e3001. Available from: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/6680.

Souza MAd, Solórzano Chávez NM. Um espaco de randers especial como modelo concreto De Geometría nao Euclideana plana: Axioma da regua infinita de Randers. Revista Sergipana de Matemática e Educacao Matemática. 2024 dez;9(4):11–26. Available from: https://periodicos.ufs.br/ReviSe/article/view/20843.

Guo E, Mo X. The geometry of spherically symmetric Finsler manifolds. vol. VOL-1 of Springer Briefs in Mathematics. 1st ed. Springer Singapore; 2018.

Shen Z. Differential geometry of spray and Finsler spaces. Springer Science & Business Media; 2013.

Bao D, Chern SS, Shen Z. An introduction to Riemann-Finsler geometry. vol. 200. Springer Science & Business Media; 2012.

Shen YB, Shen Z. Introduction to modern Finsler geometry. World Scientific Publishing Company; 2016.

Guo E, Mo X, et al. The geometry of spherically symmetric Finsler manifolds. Springer; 2018.

Xia Q. Geometry And Analysis On Finsler Spaces. vol. 17. World Scientific; 2025.

Shen Z. Lectures on Finsler Geometry. vol. VOL-1. 1st ed. World Scientific; 2001.

Lima EL. Espacos Métricos. Projeto Euclides. IMPA; 2011.

Lima EL. Análise Real. v. 1. Colecao Matemática Universitária-IMPA; 2014.

Cheng X, Shen Z. Finsler Geometry: An approach via Randers spaces. vol. VOL-1. 1st ed. Science Press Beijing-Springer; 2012.

Shen Z. Finsler metrics with K = 0 and S = 0. Canad J Math. 2003;55(1):112 132. Available from: https://doi.org/10.4153/CJM-2003-005-6.

Bao D, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. Journal of Differential Geometry. 2004;66(3):377 435. Available from: https://doi.org/10.4310/jdg/1098137838.

Hilbert D. Mathematical problems (transl. MW Newson). Bull Amer Math Soc. 1902;8:437-79.

Published

2025-07-26

How to Cite

Lujerio Garcia, D. D., Solórzano Chávez, N. M., Molina Morales, M. A., & Cerna Maguiña, B. M. (2025). Euclidean space perturbed by a constant vector field and its relation to a Zermelo navigation problem. Selecciones Matemáticas, 12(01), 15 - 32. https://doi.org/10.17268/sel.mat.2025.01.02