Discrete Dynamic Systems in Economics: A Study of Linear Difference Equations and Nonlinear Models with Naive and Adaptive Expectations

Authors

  • Jose Luis Matos Tejada Universidad Nacional de Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2025.01.14

Keywords:

Difference equation, fixed points, stability, Time series, bifurcation

Abstract

This study investigates market dynamics using a discrete economic model of supply and demand.

Initially, the linear case with naïve or static expectations is analyzed, and the stability conditions that lead to different system behaviors, such as convergence to equilibrium, periodic oscillations, or divergence, are determined analytically through the study of fixed points and cobweb dynamics.

Subsequently, the analysis is extended to the nonlinear case with adaptive expectations, where the interaction between supply nonlinearity and the expectation formation process is found to generate complex behaviors. The results show how variations in the nonlinearity parameter induce bifurcations observable in time series. The study provides a comprehensive analytical framework that links mathematical properties with observable economic phenomena, offering tools to predict and manage stability in real markets, with direct applications in economic policy and financial risk management.

References

Poitras G. Cobweb theory, market stability and price expectations, J. of the History of Economic Thought. 2023; 45(1):137-161. https://doi.org/10.1017/S1053837222000116

Pindyck RS, Rubinfeld DL. Microeconomía. 7a ed. México: Pearson Prentice Hall; 2009. 800 págs.

Mordecai Ezekiel, The Cobweb Theorem, The Quarterly Journal of Economics. 1938; 52(2): 255–280. https://doi.org/10.2307/1881734

Cars Hommes, Carl’s nonlinear cobweb, Journal of Economic Dynamics and Control. 2018; 91: 7-20. https://doi.org/10.1016/j.jedc.2017.12.007.

Elaydi SN. An Introduction to Difference Equations. 2nd ed. New York: Springer-Verlag; 1996. 389 págs.

Kulenovic MRS, Merino O. Discrete Dynamical Systems and Difference Equations with Mathematica. 1st ed. Boca Raton: Chapman and Hall/CRC; 2002. 360 págs.

Marotto FR. Introduction to Mathematical Modeling Using Discrete Dynamical Systems. Illustrated ed. Belmont: Thomson Brooks/Cole; 2006. 349 págs.

Shone R. Economic Dynamics: Phase Diagrams and their Economic Application. 2nd ed. Cambridge: Cambridge University Press; 2003. 724 págs.

Hristova V. Evolution of expectations models in economic thought. 2023; 176: 1-10. https://doi.org/10.1051/shsconf/202317604009

Leontief WW. Verzogerte Angebotsanpassing und partielles Gleichgewicht, Zeitschrift f¨ur Nationalokonomie, Journal of Economics. 1934; 5(5): 670–676. https://doi.org/10.1007/BF01316460.

Ricci U,Morgenstern O. Die, synthetische Ökonomie von Henry Ludwell Moore, Zeitschrift für Nationalo konomie, Journal of Economics. 1930; 1(5): 649–668. https://doi.org/10.1007/BF01318499.

Strogatz SH. Nonlinear Dynamics and Chaos. 2a ed. Boca Raton: CRC Press; 2018. 532 págs.

ZhangW-B. Discrete dynamical systems, bifurcations and chaos in economics. 1ª ed. Amsterdam: Elsevier Science; 2006. 460 págs.

Anagnostopoulou V, Pötzsche C, Rasmussen M. Nonautonomous bifurcation theory: concepts and tools. 1ª ed. Cham: Springer; 2023. 168 págs.

Blinder AS. Can the production smoothing model of inventory behavior be saved? Q J Econ. 1986; 101(3):431-453. https://doi.org/10.2307/1885691

Gandolfo G. Economic dynamics. 4ª ed. Berlin: Springer-Verlag; 2009. 829 págs.

Published

2025-07-26

How to Cite

Matos Tejada, J. L. (2025). Discrete Dynamic Systems in Economics: A Study of Linear Difference Equations and Nonlinear Models with Naive and Adaptive Expectations. Selecciones Matemáticas, 12(01), 162 - 185. https://doi.org/10.17268/sel.mat.2025.01.14