Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold

Authors

  • Benito Leonardo Ostos Cordero Instituto de Matemática y Ciencias Afines, Universidad Nacional de Ingeniería, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2024.02.07

Keywords:

Vector fields, Lie bracket, holomorphic action, singular set

Abstract

In this work, we study actions of the Lie group SL(2,C) on a complex manifold of dimension three or higher.

It is demonstrated that these types of actions induce three complete holomorphic vector fields, one of which is periodic, and that there exists a particular relationship between them, given by the Lie bracket, which generates a singular holomorphic foliation of codimension two. Subsequently, the types of singularities are classified, and the normal forms of these vector fields are obtained in a neighborhood of each singular point of the foliation.

References

Cairns G, Ghys E. The local linearization problem for amoth SL(n)-actions. L'Enseignenemet Mathematicque. 1997;43:133-71.

Camacho C, Neto L. A geometrix theory of foliations. Boston INC: Birkhäuser; 1985.

Viana M, Espinar J. Differential equations, a dynamical systems approach to theory and practice. Commitee: American Mathematical Society; 2020.

Bröcker T, Dieck T. Representations of compact Lie groups. Graduate Texts in Mathematics 98. Springer-Verlag Berlin Heidelberg; 1985.

Akhiezer D. Lie group actions in complex analysis; aspects of mathematics. 37. Aspects of Mathematics; 1994.

Duistermaat J, Kolk J. Lie groups. Universitext. Springer; 2004.

Rampazzo F, Sussmann H. Commutators of flow maps of nonsmooth vector fields. J Differential Equations. 2006;232:134-75.

Reducci A, Zizza M. Geometric interpretation of the vanishing Lie Bracket for two-dimensional rough vector fields. ar-Xiv:240602340. 2024.

Columbo M, Tione R. On the commutativity of flows of rough vector fileds. Journal des Mathematiques pures et appliqyues. 2021;159:294-312.

Posilicano A. A group structure on the space of time-dependent vector fields. Springer Verlag. 1988;105:287-93.

Blade S, Casas F, Oteo J, Ros J. The Magnus expansion and some of its aplications. Elsevier, Physics Report. 2008;470:151-238.

Coutinho H. Linearizacao de acoes do grupo afim [Tesis Doctoral]. Rio de Janeiro; 2008.

Ostos B. Estudio local y global, tipos de órbitas y existencia de separatrices para una acción holomorfa [Tesis Doctoral]. Lima: Universidad Nacional de ingeniería; 2014.

Chiba H. Kovalevskaya exponents and the space of initial conditions of a quasi homogeneous vector field. J Diferential Equations. 2015;259:7681-716.

Brochero F, Corrêa Jr M, Rodríguez A. Poincaré problem for weighted proyective foliations. Bulletin of the Brazilia Mathematical Society. 2017;48:219-35.

Corrêa Jr M, Soares M. A note on Poincare's problem for quasi-homogeneous foliations. American Mathematical Society. 2022;140:3145-50.

Published

2024-12-28

How to Cite

Ostos Cordero, B. L. (2024). Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold. Selecciones Matemáticas, 11(02), 285 - 302. https://doi.org/10.17268/sel.mat.2024.02.07