Relationship Between the Cantor-Bendixson Derivative and the Algebra of Sets

Authors

  • Andres Merino Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito, Ecuador. http://orcid.org/0000-0002-5404-918X
  • Sebastián Heredia F. Posgrado Conjunto en Ciencias Matemáticas UNAM-UMSNH, Morelia, Michoacán, México.

DOI:

https://doi.org/10.17268/sel.mat.2023.02.10

Keywords:

Cantor-Bendixson derivative, derivative of a set

Abstract

This article provides a detailed analysis of the relationship between the Cantor-Bendixson derivative and set containment, as well as the standard set operations of union and intersection. In particular, it is shown that the Cantor-Bendixson derivative is increasing with respect to set containment and, under suitable hypotheses, generates a decreasing family of sets. On the other hand, we study both the derivative of a union and the derivative of an intersection, under different restrictions on the cardinality of the family of sets being operated on, while taking into account the order of derivative being performed.

Author Biography

Andres Merino, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Profesor titular, Escuela de Ciencias Físicas y Matemática

References

Cantor G. Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Mathematische Annalen. 1872;5:123-32.

Cantor G. Ueber unendliche, lineare Punktmannichfaltigkeiten I. Mathematische Annalen. 1879;15:1-7.

Cantor G. Ueber unendliche, lineare Punktmannichfaltigkeiten II. Mathematische Annalen. 1880;17:355-8.

Cantor G. Ueber unendliche, lineare Punktmannichfaltigkeiten III. Mathematische Annalen. 1882;20:113-21.

Cantor G. Ueber unendliche, lineare Punktmannichfaltigkeiten IV. Mathematische Annalen. 1883;21:51-8.

Engelking R. General Topology. Warszawa: PWN; 1977.

Kuratowski K. Topology: Volume I. New York: Academic Press; 1966.

Sierpínski W. Introduction to General Topology. Canad´a: University of Toronto Press; 1934.

Pervin W. Foundations of General Topology. New York: Academic Press; 1964.

Moore G. The emergence of open sets, closed sets, and limit points in analysis and topology. Historia Mathematica. 2008;35(3):220-41.

Álvarez Samaniego B, Merino A. Some properties related to the Cantor-Bendixson derivative on a polish space. New Zealand Journal of Mathematics. 2020;50(2):207-18.

Chaber J, Pol R. On the Cantor-Bendixson derivative, resolvable ranks, and perfect set theorems of A. H. Stone. Israel Journal of Mathematics. 1999;110:103–123.

Higgs D. Iterating the Derived Set Function. The American Mathematical Monthly. 1983;90(10):693-7.

Ávarez-Samaniego B, Merino A. A primitive associated to the Cantor-Bendixson derivative on the real line. Journal of Mathematical Sciences: Advances and Applications. 2016;41:1-33.

Published

2023-12-27

How to Cite

Merino, A., & Heredia F., S. (2023). Relationship Between the Cantor-Bendixson Derivative and the Algebra of Sets. Selecciones Matemáticas, 10(02), 339 - 351. https://doi.org/10.17268/sel.mat.2023.02.10