A comparative analysis of methods: mimetics, finite differences and finite elements for 1-dimensional stationary problems
DOI:
https://doi.org/10.17268/sel.mat.2021.01.01Keywords:
Mimetic method, Finite element method, Finite difference method, Conservative methods, ConvergenceAbstract
Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present complex geometries, boundary or initial conditions, or involve non-linear differential equations. Currently, the number of problems that are modeled with partial differential equations are diverse and these must be addressed numerically, so that the results obtained are more in line with reality. In this work, a comparison of the classical numerical methods such as: the finite difference method (FDM) and the finite element method (FEM), with a modern technique of discretization called the mimetic method (MIM), or mimetic finite difference method or compatible method, is approached. With this comparison we try to conclude about the efficiency, order of convergence of these methods. Our analysis is based on a model problem with a one-dimensional boundary value, that is, we will study convection-diffusion equations in a stationary regime, with different variations in the gradient, diffusive coefficient and convective velocity.
References
Calderón G, Lugo A. Estimación del Error y Adaptatividad en Esquemas Miméticos para Problemas de Contorno. Boletín de la Asociación Matemática Venezolana. 2015; 22(2):109–124.
Castillo JE, Grone RD. A Matrix Analysis Approach to Higher-Order Approximations for Divergence and Gradients Satisfying a Global Conservation Law. SIAM J Matrix Anal Appl. 2003; 25(1):128–142.
Hyman JM, Shashkov M. The Approximation of Boundary Conditions for Mimetic Finite Difference Methods. Computers Math Applic. 1998; 36(5):79–99.
Hyman JM, Shashkov M, Steinberg S. Mimetic Finite Difference Methods for Diffusion Equations. Computers Math Applic. 2002; 6(3-4):333–352.
Shashkov M, Steinberg S. Support-Operator Finite-Difference Algorithms for General Elliptic Problems. Journal of Computational
Physics. 1995; 118(1):131–151.
Freites MA. Un estudio comparativo de los métodos miméticos para la ecuación estacionaria de difusión; 2004. Tesis de grado, Facultad de Ciencias, UCV.
Guevara JM, Freites M, Castillo JE. A New Second Order Finite Difference Conservative Scheme. Divulgaciones Matem´aticas. 2005;13(1):107–122.
Li BQ. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. 5th ed. London: Springer-Verlag; 2006.
Rivière B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. 5th ed. Philadelphia: SIAM; 2008.
Cordero F, Díez P. XFEM+: una modificación de XFEM para mejorar la precisión de los flujos locales en problemas de difusión con conductividades muy distintas. Revista Internacional Métodos Numéricos para Cálculo y Diseño en Ingeniería. 2010; 26(2):121–133.
Arteaga J, Guevara JM. A Conservative Finite Difference Scheme for Static Diffusion Equation. Divulgaciones Matemáticas. 2008; 16(1):39–54.
Guevara JM. Sobre los Esquemas Miméticos de Diferencias Finitas para la Ecuación Estática de Difusión. Caracas, Venezuela: Facultad de Ciencias, UCV; 2005.
Becker EB, Carey GF, Oden JT. Finite Elements: An Introduction. New Jersey 07632: Prentice-Hall, Inc.; 1981.
Solín P. Partial Differential Equations and Finite Element Method. 5th ed. New Jersey: John Wiley & Sons, Ltd.; 2006.
Calderón G, Gallo R. Introducción al Método de los Elementos Finitos: un Enfoque Matemático. Caracas, Venezuela: IVIC; 2011.
Strikwerda JC. Finite Difference Schemes and Partial Differential Equations. 2nd ed. Philadelphia: SIAM, Ltd.; 2004.
Céa J. Approximation variationnelle des probl`emes aux limites. Annales de l’institut Fourier. 1964; 14(2):345–444.
Batista ED, Castillo JE. Mimetic Schemes on Non-Uniform Structured Meshes. Electronic Transactions on Numerical Analysis. 2009; 34(1):152–162.
Corbino J, Castillo JE. High-order mimetic finite-difference operators satisfying the extended Gauss divergence theorem. Journal of Computational and Applied Mathematics. 2020; 364:112326.
Boada Paolini C, Castillo JE. High-order mimetic finite differences for anisotropic elliptic equations. Computers & Fluids. 2020; 213:104746.
Abouali M, Castillo JE. Solving Poisson equation with Robin boundary condition on a curvilinear mesh using high order mimetic discretization methods. Mathematics and Computers in Simulation. 2017; 139:23–36.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Abdul Abner Lugo Jiménez, Guelvis Enrique Mata Díaz, Bladismir Ruiz
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.