Local Well-posedness of a Nutku-Oguz-Burgers System With Time Dependent Coefficients

Authors

  • Juan Montealegre Pontificia Universidad Católica del Perú, Departamento de Ciencias.
  • Gladys Cruz Universidad Nacional Tecnológica de Lima Sur, Facultad de Ingeniería y Gestión.

DOI:

https://doi.org/10.17268/sel.mat.2018.02.01

Keywords:

Initial Value problem, Korteweg-de Vries equations, Local well-posedness, Sobolev spaces

Abstract

In this paper we study the local well-posedness of the initial value problem for a Nutku-Oguz-Burgers system with time dependent coefficients, formed by two Korteweg-de Vries equations coupled through the non-linear terms. The system appears as a model of wave propagation in a shallow channel with variable bottom surface, in which both nonlinear and dispersive effects are relevant. The proof of existence and uniqueness of local solution and the continuous dependence on the initial data of the local solution in Sobolev spaces Hs(R) x Hs(R), s > 3/2, are
based on the works [9] and [17].

References

Albert, J., Bona, J., Saut, J.C. Model equations for waves in stratified fluids. Proc. Royal Soc. London A, (1997) 453, pp. 1233-1260.

Bona, J., Chen, H. Solitary waves in nonlinear dispersive systems. Discrete and continuous dynamical systems B, 2 (2002), pp. 313-378.

Bona,J, Chen, H., Karakashian, O. Stability of solitary-wave solutions of systems of dispersive equations. Applied Mathematics & Optimization. Volume 75, Issue 1, (2017), pp. 27-53.

Bona, J., Chen, M., Saut, J.C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12 (2002), pp. 283–318.

Bona, J., Chen, M., Saut, J.C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory. Nonlinearity 17 (2004), pp. 925–952.

Bona, J., Cohen,J., Wang, G. Global well-posedness for a system of KdV-type equations with coupled quadratic nonlinearities. Nagoya Math. J. Volume 215 (2014), pp. 67-149.

Gear, J. A., Grimshaw, R. Weak and strong interactions between internal solitary waves. Stud. Appl. Math., 70, (1984), pp. 235-258.

Hu, H., Liu, Q.P. Decouple a coupled KdV system of Nutku and Oguz. Phys. Lett. 294A (2002), pp. 84-86.

Iório Jr. R.J. On the Cauchy problem for the Benjamin-Ono equation. Comm. PDE, 11, (1986), pp. 1031-1081.

Iório Jr. R.J. KdV, BO and friends in weigheted Sobolev spaces. Springer-Verlag, Lecture Notes in Mathematics, 1450, (1990), pp. 104-121.

Kato, T. On the Cauchy problem for the (Generalized) KdV equations. Studies in Applied Mathematics, Advances in Mathematics Supplementary Studies, 8, (1983), pp. 93-128.

Kato, T., Fujita, H. On the non-stationary Navier-Stokes system. Red. Sem. Mat. Uni. Padova, 32, (1962), pp. 243-260.

Kato, T., Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41, (1988), pp. 891-907.

Majda, A., Biello, J. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmospheric Sci. 60 (2003), pp. 1809-1821.

Montealegre, J. El sistema de Nutku-Oguz I: Buena formulación global en espacios de alta regularidad. Por publicar.

Montealegre, J. El sistema de Nutku-Oguz II: Buena formulación global en espacios de baja regularidad. Por publicar.

Montealegre, J., Monzón, C. Existencia y unicidad de solución local para un sistema dispersivo con coeficientes dependientes del tiempo. Reporte de investigación, N° 20 Serie B, PUCP, (2006).

Nutku, Y., Oguz, O. Bi-Hamiltonian structure of a pair of coupled kdv equations. Il Nuovo Cimento 105B (1990), pp. 1381-1383.

Downloads

Published

2018-12-30

How to Cite

Montealegre, J., & Cruz, G. (2018). Local Well-posedness of a Nutku-Oguz-Burgers System With Time Dependent Coefficients. Selecciones Matemáticas, 5(02), 121-136. https://doi.org/10.17268/sel.mat.2018.02.01