A completely KdV-type Boussinesq system in low regularity spaces

Authors

  • Juan Montealegre Pontificia Universidad Católica del Perú, Departamento de Ciencias. Av. Universitaria 1801, San Miguel, Lima 32, Perú.
  • Zelideth Pérez Universidad Nacional Agraria La Molina, Facultad de Ciencias. Av. La Molina s/n, La Molina, Lima 12, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2018.01.03

Keywords:

Cauchy problem, Korteweg-de Vries equations, Global well posedness, Bourgain spaces, almost conservation laws

Abstract

In this paper we study the well-posedness of Cauchy problem for a Boussinesq system formed by two Kortewegde Vries equations coupled through the linear part and the non-linear terms. First we proof its local well-posedness
in the Sobolev spaces Hs (R) x Hs (R), s > -3/4, using the bilinear estimate established by Kenig, Ponce and Vega in the Fourier transform restriction spaces [4, 12]. After, we prove the global well-posedness in Hs (R) x Hs (R) for s > -3/10, our proof proceeds by the method of almost conservation laws, sometimes called the “I-method”[5, 6].

References

Bona, J.; Chen, H. and Saut, J.C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part I. Derivation and linear theory. J. Nonlinear Sci. 19, 283-318.(2002).

Bona, J.; Chen, H. and Saut, J.C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part II. Nonlinear theory. Nonlinearity 17, 925-952. (2004).

Bona, J. and Smith, R. The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Royal Soc. London Series A 278,555-601. (1975).

Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. and Funct. Anal. 3, 107-156, 209–262. (1993).

Colliander, J.; Keel,M.; Staffilani, G.; Takaoka, H. and Tao, T. Global well-posedness result for KdV in Sobolev spaces of negative index. Elec. J. Diff. Eq. 26, (2001), 1 - 7.

Colliander, J.; Keel,M.; Staffilani, G.; Takaoka, H. and Tao, T. Sharp global well-posedness for KdV and modified KdV on R and T. Jr. Amer. Math. Soc. 16, 705-749. (2003).

Evans, L.C. Partial Differential Equations. Providence, RI. American Mathematical Society, Second Edition (2010).

Iorio, R. On the Cauchy problem for the Benjamin-Ono equation. Comm PDE. 11, 1031-1081. (1986).

Iorio, R. KdV, BO and friends in weighted Sobolev spaces. Lecture Notes in Math. 1450, 104-121. (1990).

Kenig, C.E. Ponce, G. and Vega, L. Well-posedness of the initial value problem for the Kortweg-de Vries equation. J. Amer. Math. Soc. 4, 323-347. (1991).

Kenig, C.E. Ponce, G. and Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraccion principle. Comm. Pure Appl. Math. 46, 527-620, (1993).

Kenig, C.E. Ponce, G. and Vega, L. A bilinear estimate with application to tha KdV equation. J. Amer. Math. Soc. 9, 573-603. (1996).

Linares, F. and Ponce, G. Introduction to Nonlinear Dispersive Equations. Springer-Verlag New York. Universitext, 260 p. (2009).

Pérez, Z. Problema de valor inicial para un sistema de Boussinesq. Tesis de Magister, PUCP. (2018).

Rueda, D. Estudio local y global de un sistema tipo Korteweg-De Vries-Burger. Tesis de Magister, PUCP. (2012).

Published

2018-07-27

How to Cite

Montealegre, J., & Pérez, Z. (2018). A completely KdV-type Boussinesq system in low regularity spaces. Selecciones Matemáticas, 5(01), 17 - 26. https://doi.org/10.17268/sel.mat.2018.01.03