The Gamma Function: basic properties and some applications
DOI:
https://doi.org/10.17268/sel.mat.2017.02.05Keywords:
Lebesgue Integral, Gamma Function, Beta Function, Convolution, Continuous DistributionAbstract
The goal of the present work is to study some properties and applications of the Gamma Function, denoted by Γ. Initially, we use the Lebesgue Integral Theory in order to prove that the improper integral given by Γ is convergent. We describe the extended domain property of Γ, and we also deduce some elementary properties. We present two different ways of proving that B(x, y) = Γ(x)Γ(y)/Γ(x+y) , where B is the Beta Function. Finally, we include some applications of the Gamma Function, between them some serve up as tools on Reliability Engineering.
References
E. ARTIN, The Gamma function. Translated by M. Butler, Holt. Rinehart and Winston, New York, 1964.
TOM M. APOSTOL, Análisis matemático. Reverte, Barcelona, 1996.
DEPOOL RIVERO, RAMON & DIÓSCORO, MONASTERIO, Probabilidad y Estadística. Aplicaciones a la Ingeniería. Universidad Nacional Experimental Politécnica “Antonio José de Sucre”. Barquisimeto. Venezuela. 2013. http://bqto.unexpo.edu.ve/avisos/PROBABILIDADYESTADISTICA(2-7-13).pdf (visitado 10-10-2016).
NORBERTO FAVA & FELIPE ZÓ, Medida e Integral de Lebesgue, Departamento de Matemática, FCEyN, Universidad de Buenos Aires. Argentina. 2013. http://cms.dm.uba.ar/depto/public/Cursodegrado/fascgrado4.pdfhttp://cms.dm.uba.ar/depto/public/Cursodegrado/fascgrado4.pdf (visitado 10-10-2016).
MAURICE GODEFROY, La fonction Gamma; Théorie, Histoire, Bibliographie, Gauthier-Villars, Paris, 1901.
PEREZ A. JUAN & C. SERRAT, Distribuciones habituales en fiabilidad.UPC,Catalunya.2006http://www.uoc.edu/in3/emath/docs/Q1P
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.