Influence of antioxidants on oxidative stability of the oil Chia (Salvia hispanica L.) by rancimat

Eudes Villanueva, Gilbert Rodríguez, Elza Aguirre, Víctor Castro

Abstract


Oxidative rancidity, known as autoxidation, is the main cause of deterioration of oils and fats, which can be controlled by the use of antioxidants increasing oxidative stability and shelf life. Chia oil is rich in polyunsaturated fatty acids (PUFAs), particularly omega-3 (ω-3) and omega-6 (ω-6) beneficial to human health, but PUFAs also favor the reaction of Autoxidation. The aim of this work was to determine the effect of natural and synthetic antioxidants at the concentration of 200 ppm of ethoxyquin (EQ), butylhydrixyanisol (BHA), butylhydroxytoluene (BHT) and fortium (FT), on the oxidative stability index (OSI) of chia oil per rancimat at different temperatures (90, 100 and 110 °C). The rancimat method is included in the AOCS Cd 12b-92 standards, because of its ease of use and reproducibility allows evaluating the OSI in a relatively short period. The results show that between BHT and EQ, as well as between BHA and FT, did not present a statistically significant difference (p ≤ 0.05). The BHT being the antioxidant that increased the chia oil OSI, with a protection factor (PF) of 1.30, 1.26 and 1.29 for the different temperatures applied and with an activation energy (Ea) of 82.75 kJ / mol, therefore, its use would be recommended.

Keywords


chia oil; oxidative stability index; protection factor; activation energy; rancimat

References


Adhvaryu, A.; Erhan, S.; Liu, Z.; Perez, J. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochemica Acta 364: 87–97.

AOAC 991.39. 2000. Official Methods of Analysis of AOAC International.17th ed.; Chapter 41, p26, 2000.

Ayerza, R.Jr.; Coates, W. 2011. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia Hispanica L.). Industrial Crops and Products 34: 1366–1371.

Bodoroina, R.M.; Penci C.M.; Ribotta P.D.; Martinez L.M. 2017. Chia (Salvia hispánica L.) oil stability: study of the effect of natural antioxidants. LWT - Food Science and Technology 75: 107-113.

Brewer, M.S. 2011. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential 851 Applications. Comprehensive Reviews in Food Science and Food Safety 10: 221–247.

Codex Alimentarius. 2001. Fats, oils and related products (2nded.). Rome, Italy: FAO/WHO Food Standards Programme.

Decker, E.A. 2002. Antioxidant mechanisms. In: Akoh, D.; Min, D.B. Editors. Food Lipids: Chemistry, Nutrition, and Biotechnology. 2nd ed. New York: Marcel Dekker, Inc. pp. 530–556.

De Leonardis, A.; Macciola V. 2012. Heat – oxidation stability of palm oil blended with extra virgin olive oil. Food Chemistry 135: 1769-1776.

Farhoosh, R.; Niazmand, R.; Rezaei, M.; Sarabi, M. 2008. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. European Journal of Lipid Science and Technology 110: 587–592.

Frankel, E. 2005. Lipid oxidation (2nd ed.). Bridgwater, UK: The Oily Press Ltd. P. 187 – 208.

Focke, W.; Westhuizen,I.; Oosthuysen, X. 2016. Biodiesel oxidative stability from Rancimat data. Thermochimica Acta 633: 116–121.

Gharby, S.; Harhar, H.; El Monfalouti, H.; Kartah, B.; Maata, N.; Guillaume, D.; Char-rouf, Z. 2011. Chemical and oxidative properties of olive and Argan oils sold on the Moroccan market. A comparative study. Med. J. Nutr. Metab. 44: 1–8.

García-Moreno, P.; Pérez-Gálvez, R.; Antonio, G.; Emilia, M. 2013. Influence of the parameters of the Rancimat test on the determination of the oxidative stability index of cod liver oil. LWT - Food Science and Technology 51: 303-308.

Gogus, U.; Smith, C. 2010. n-3 Omega fatty acids: a review of current knowledge. Int. J. Food Sci. Technol 45: 417–436.

González, A.; Marcela, L.; Martínez, A.J.; Paredes, A.E. León, Pablo D. Ribotta, 2016. Study of the preparation process and variation of wall components in chia (Salvia hispanica L.) oil microencapsulation. Powder Technology 301: 868–875.

Guiotto, E.N.; Ixtaina, V.Y.; Nolasco, S.M.; Tomás, M.C.M. 2014. Effect of Storage Conditions and Antioxidants on the Oxidative Stability of Sunflower–Chia Oil Blends. J Am Oil ChemSoc 91: 767-776.

Hernández, M.E.; Reyes, J.L.; Gomez-Lojero, C.; Sayavedra, M.S.; Melendez, E. 1993. Inhibition of the renal uptake ofp-aminohippurate and tetraethylammoniumby the antioxidant ethoxyquin in the rat. Food and Chem. Toxic. 31: 363–36.

Ixtaina, V.Y.; Nolasco, S.M.; Tomás, M.C. 2012. Oxidative stability of chia (Salvia hispanica L.) seed oil: effect of antioxidants and storage conditions. J Am Oil Chem Soc 89: 1077–1090.

Krichene, D.; Allalout, A.; Mancebo-Campos V.; Salvador M.; Zarrouk M.; Fregapane G. 2010. Stability of virgin olive oil and behaviour of its natural antioxidants under medium temperature accelerated storage conditions. Food Chemistry 121: 171–177.

Lampi, A.-M.; Kamal-Eldin, A.; Piironen, V. 2002. Tocopherols and Tocotrienols from Oil and 1020 Cereal Grains. In: Functional Foods, Biochemical and Processing Aspects. Vol. 2 (Eds. J. Shi, G. 1021 Mazza, M. Le Maguer). CRC Press, Boca Raton, FL, p. 1-38.

Lutterodt, H.; Luther, M.; Slavin, M.; Yin, J.; Parry, J.; Gao, J.; Yu, L. 2010. Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. LWT-Food Sci. Technol 43: 1409–1413.

Martínez, M.L.; Curti, M.I.; Roccia, P.; Llabot, J.M.; Penci, M.C.; Bodoira, R.M.; Ribotta, P.D. 2015. Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray drying. Powder Technology 270: 271–277.

Marquez, R.; Martin, P.; Velasco, J.; Dobarganes, C. 2008. Formation of oxidation compounds in sunflower and olive oils under oxidative stability index conditions. European J. of Lipid Science & Technology 110: 1-6.

Metrohm, 2009. Programa para PC, 743 Rancimat 1.0 SR1. Herisau/ Suiza.

Navas, H. 2010. Componentes minoritarios y propiedades antioxidantes de aceites vírgenes y tortas residuales obtenidos por presión en frío a partir de fuentes vegetales convencionales y no convencionales. Tesis Doctoral. Univ. de Castilla La Mancha, Facultad de Ciencias Químicas. España.

Nawar, W.F. 1996. Lipids. In: Fennema O, editor. Food chemistry. 3rd ed. New York: Marcel Dekker, Inc. p 225–320.

Prasad-Timilsena, Y.; Adhikari, R.; Barrowc, C.J.; Adhikari, B. 2016. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. International Journal of Biological Macromolecules 91: 347–357.

Rodríguez, G.; Villanueva, E.; Glorio, P.; Baquerizo, M. 2015. Oxidative stability and estimate of the shelf life of sacha inchi (Plukenetia volubilis L.) oil. Scientia Agropecuaria 6: 155–163.

Shahidi, F.; Wanasundara, U. 2002. Methods for measuring oxidative rancidity in fats and oils. In C. C. Akoh, & D. B. Min (Eds.), Food lipids, chemistry, nutrition and biotechnology. New York, EEUU.

Shahidi, F.; Wanasundara, P.K. 1992. Phenolic antio-xidants. Crit Rev Food Sci Nut 32(1): 67–103.

Srinivasan, O.; Parkin, K.L.; Fennema, O.; editors. 2008. Fennema’s food chemistry. 4th ed. Boca Raton, Fla.: CRC Press. 1144 pp.

Villanueva, E.; Castillo, D.; Rodríguez, G. 2013. Influence of the Rancimat parameters on the determination of oxidative stability index of Sesamum Indicum L. Oil. Scientia Agropecuaria 4: 173–180.

Received August 25, 2016.

Accepted January 09, 2017.

Corresponding author: giropape@yahoo.com (G. Rodríguez).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2017.01.02

Refbacks

  • There are currently no refbacks.


Licencia de Creative Commons Scientia Agropecuaria by Universidad Nacional de Trujillo is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.