Cartan-Eilenberg Systems in Twisted Equivariant K-Theory

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.01.04

Keywords:

Cartan-Eilenberg system, twisted equivariant K-thoery, spectral sequence, equivariant simplicial Cech complex

Abstract

The goal of this paper is to show explicitly the construction of a Cartan-Eilenberg system for the twisted equivariant K-theory groups of a finite G-CW complex, with G a finite group. Such a system defines a spectral

sequence, whose second page is given by the Cˇech cohomology of a presheaf associated to projective representations of isotropy groups.

References

Adem A, Ruan Y. Twisted Orbifold K-Theory. Comm. Math. Phys. 2003; 237(3): 533–556.

Atiyah M, Hirzebruch F. Vector bundles and homogeneous spaces. Amer. Math. Soc. Symp. in Pure Math. 1961; 3: 7–38.

Atiyah M, Segal G. Twisted K-Theory. Ukr. Mat. Visn. 2004; 1(3): 287–330.

Bárcenas N, Espinoza J, Uribe B, Velázquez M. Segal’s spectral sequence in twisted equivariant K-theory for proper and discrete actions. Proceedings of the Edinburgh Mathematical Society. 2018; 61(1): 121–150. https://doi.org/10.1017/S0013091517000281

Bárcenas N, Espinoza J, Joachim M, Uribe B. Universal twist in equivariant K-theory for proper and discrete actions. Proceedings of the London Mathematical Society. 2014; 108(5): 1313–1350. https://doi.org/10.1112/plms/pdt061

Cartan H, Eilenberg S. Homological algebra. Princeton Landmarks in Mathematics, 1956.

Dwyer C. Twisted equivariant K-theory for proper actions of discrete groups. K-Theory. 2008; 38: 95–111.

Eilenberg S, Steenrod N. Foundations of algebraic topology. Princeton University Press, 1952.

Espinoza J, Uribe B. Topological properties of the unitary group. JP Journal of Geometry and Topology. 2014; 16(1): 45–55.

Espinoza J. K-Teoría Equivariante Torcida. PhD thesis, UNAM, 2013.

Espinoza J. K-teoría equivariante torcida. Memorias de la XXI Semana de Investigación y Docencia en Matemáticas. Universidad de Sonora, 2011.

Freed D, Hopkins J, Teleman C. Loop groups and twisted K-theory I. Journal of Topology. 2011; 4(4): 737–798.

Hatcher A. Algebraic Topology. Cambridge, New York, NY., 2002.

Karpilovsky G. Projective Representations of Finite Groups. Monographs in Pure and Applied Mathematics 94. Marcel Dekker, Inc., New York and Basel, 1985.

Karpilovsky G. Group Representations, vol. 2 of North-Holland Mathematics Studies 177. Elsevier Science Publishers, Amsterdam, The Netherlands, 1993.

May J, Sigurdsson J. Parametrized Homotopy Theory. Mathematical surveys and monographs, American Mathematical Society, 2006.

McCleary J. User’s Guide to Spectral Sequences. Wilmington, Delaware (U.S.A.), 1985.

Schultz R. Homotopy decompositions of equivariant function spaces. II. Math. Z. 1973; 132: 69–90.

Segal G. Classifying spaces and spectral sequences. Publications Mathematiques de Inst. Hautes ´ Etudes Sci. Publ. Math. 1968; 34: 105–112.

Segal G. Equivariant K-Theory. Publications Mathematiques de Inst. Hautes Études Sci. Publ. Math. 1968; 34: 129–151.

Simms D. Topological aspects of the projective unitary group. Proc. Camb. Phil. Soc. 1970; 68: 57–60.

Uribe B. Group actions on DG-Manifolds and Exact Courant Algebroids. Communications in Mathematical Physics. 2013; 318(1): 35–67. https://doi.org/10.1007/s00220-013-1669-2

Published

2020-07-25

How to Cite

Espinoza, J. F., & Ramos, R. R. (2020). Cartan-Eilenberg Systems in Twisted Equivariant K-Theory. Selecciones Matemáticas, 7(01), 29-41. https://doi.org/10.17268/sel.mat.2020.01.04