Sistemas de Cartan-Eilenberg en K-teoría Equivariante Torcida

Autores

DOI:

https://doi.org/10.17268/sel.mat.2020.01.04

Palavras-chave:

Sistema de Cartan-Eilenberg, K-teoría equivariante torcida, sucesión espectral, complejo simplicial de Cech equivariante

Resumo

El objetivo de este trabajo es mostrar de manera explícita la construcción de un sistema de Cartan-Eilenberg para los grupos de K-teoría equivariante torcida sobre un G-complejo celular finito, con G un grupo finito.

Dicho sistema define una sucesio´n espectral cuya segunda página es dada por la cohomología de Cech asociada a una pregavilla de representaciones proyectivas de grupos de isotropía.

Referências

Adem A, Ruan Y. Twisted Orbifold K-Theory. Comm. Math. Phys. 2003; 237(3): 533–556.

Atiyah M, Hirzebruch F. Vector bundles and homogeneous spaces. Amer. Math. Soc. Symp. in Pure Math. 1961; 3: 7–38.

Atiyah M, Segal G. Twisted K-Theory. Ukr. Mat. Visn. 2004; 1(3): 287–330.

Bárcenas N, Espinoza J, Uribe B, Velázquez M. Segal’s spectral sequence in twisted equivariant K-theory for proper and discrete actions. Proceedings of the Edinburgh Mathematical Society. 2018; 61(1): 121–150. https://doi.org/10.1017/S0013091517000281

Bárcenas N, Espinoza J, Joachim M, Uribe B. Universal twist in equivariant K-theory for proper and discrete actions. Proceedings of the London Mathematical Society. 2014; 108(5): 1313–1350. https://doi.org/10.1112/plms/pdt061

Cartan H, Eilenberg S. Homological algebra. Princeton Landmarks in Mathematics, 1956.

Dwyer C. Twisted equivariant K-theory for proper actions of discrete groups. K-Theory. 2008; 38: 95–111.

Eilenberg S, Steenrod N. Foundations of algebraic topology. Princeton University Press, 1952.

Espinoza J, Uribe B. Topological properties of the unitary group. JP Journal of Geometry and Topology. 2014; 16(1): 45–55.

Espinoza J. K-Teoría Equivariante Torcida. PhD thesis, UNAM, 2013.

Espinoza J. K-teoría equivariante torcida. Memorias de la XXI Semana de Investigación y Docencia en Matemáticas. Universidad de Sonora, 2011.

Freed D, Hopkins J, Teleman C. Loop groups and twisted K-theory I. Journal of Topology. 2011; 4(4): 737–798.

Hatcher A. Algebraic Topology. Cambridge, New York, NY., 2002.

Karpilovsky G. Projective Representations of Finite Groups. Monographs in Pure and Applied Mathematics 94. Marcel Dekker, Inc., New York and Basel, 1985.

Karpilovsky G. Group Representations, vol. 2 of North-Holland Mathematics Studies 177. Elsevier Science Publishers, Amsterdam, The Netherlands, 1993.

May J, Sigurdsson J. Parametrized Homotopy Theory. Mathematical surveys and monographs, American Mathematical Society, 2006.

McCleary J. User’s Guide to Spectral Sequences. Wilmington, Delaware (U.S.A.), 1985.

Schultz R. Homotopy decompositions of equivariant function spaces. II. Math. Z. 1973; 132: 69–90.

Segal G. Classifying spaces and spectral sequences. Publications Mathematiques de Inst. Hautes ´ Etudes Sci. Publ. Math. 1968; 34: 105–112.

Segal G. Equivariant K-Theory. Publications Mathematiques de Inst. Hautes Études Sci. Publ. Math. 1968; 34: 129–151.

Simms D. Topological aspects of the projective unitary group. Proc. Camb. Phil. Soc. 1970; 68: 57–60.

Uribe B. Group actions on DG-Manifolds and Exact Courant Algebroids. Communications in Mathematical Physics. 2013; 318(1): 35–67. https://doi.org/10.1007/s00220-013-1669-2

Publicado

2020-07-25

Como Citar

Espinoza, J. F., & Ramos, R. R. (2020). Sistemas de Cartan-Eilenberg en K-teoría Equivariante Torcida. Selecciones Matemáticas, 7(01), 29-41. https://doi.org/10.17268/sel.mat.2020.01.04

Edição

Seção

Articles