Curvas dadas por la intersección transversal de dos superficies en el espacio tridimesional de Minkowski

Osmar Alêssio, Sayed A.-N. Badr, Soad A. Hassan, Luciana A. Rodrigues, Fabio N. Silva, M.A. Soliman

Resumen


En este artículo, estudiamos la geometría diferencial de la curva dada por la intersección transversal de dos superficies en el espacio tridimensional de Minkowski donde cada par satisface los siguientes tipos de superficies; tipo espacio - tipo luz, tipo tiempo - tipo luz y tipo luz - tipo luz. Generalmente, las superficies están dadas por sus ecuaciones paramétricas o implícitas, entonces el problema de intersección superficie superficie aparece comunmente como paramétrico-paramétrico, paramétrico-implícito e implícito-implícito.
Obtenemos el Referencial de Frenet, el Referencial de Darboux, la curvatura, la torsión, la curvatura normal y las curvaturas geodésicas de las intersecciones transversales para todos los tipos de problemas de intersección. Mostramos que la curva de intersección puede ser una curva similar a una curva tipo espacio
( tipo tiempo, tipo luz o pseudo nula). Finalmente, mostramos nuestros métodos por varios ejemplos.


Palabras clave


Espacio tridimensional de Minkowski; Intersección Superficie-superficie; Curva pseudo nula; Curva nula; Referencial nulo; Superficie tipo luz; Referencial de Darboux

Texto completo:

PDF (English) HTML (English)

Referencias


Abdel-All, N.H., Badr, S.A-N., Soliman, M.A., Hassan, S.A. Intersection curves of two implicit surfaces in R3. Journal of Mathematical and Computational Science, 2 (2),(2012), 152-171.

Abdel-All, N. H., Badr, S. A-N., Soliman, M. A., Hassan, S. A. Intersection curves of hypersurfaces in R4. Computer Aided Geometric Design 29(2), (2012), 99-108.

Alêssio, O. Differential geometry of intersection curves of three implicit surfaces in R4. Computer Aided Geometric Design 26 (4) (2009) 455-471.

Alêssio, O., Düldül, M., Düldül, B., Abdel-All, N. H., Badr, S. A.-N. Differential geometry of non-transversal intersection of three parametric hypersurfaces in Euclidean 4-space. Computer Aided Geometric Design 31(9), (2014), 712-727.

Alêssio, O., Düldül, M., Düldül, B., Abdel-All, N. H., Badr, S. A.-N. Differential geometry of non-transversal intersection curves of three implicit hypersurfaces in Euclidean 4-space. Journal of Computational and Applied Mathematics, 308(2016) 20-38.

Alêssio, O., Guadalupe, I. V. Determination of a transversal intersection curve of two spacelike surfaces in Lorentz Minkowski3-space. Hadronic J.30 (3) (2007) 315-341.

Badr, S.A-N. Intrinsic geometry of intersection curves of surfaces in Euclidean spaces. Lambert Academic Publishing GmbH & Co. KG, Germany, (2011).

Badr, S. A.-N., Abdel-All, N. H., Aléssio, O., Düldül, M., Düldül, B. Non-transversal intersection curves of hypersurfaces in Euclidean 4-space. Journal of Computational and Applied Mathematics 288, (2015), 81-98.

Bejancu, A. Lightlike curves in Lorentz manifolds. Publ. Math. Debrecen 44 (1994), 145-155.

Bonnor, W. B. Null curves in a Minkowski space-time. Tensor N.S. 20 (1969), 229-242.

Do Carmo, M.P. Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1976).

Duggal, K.L., Bejancu, A. Lightlike Submanifolds of semi-Riemannian manifolds and applications. Kluwer Academic Publishers, (1996).

Düldül, B. U., C¸alıs¸kan, M. Spacelike intersection curve of three spacelike hypersurfaces in E4 1 . Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (1) (2013) 23-33.

Goldman, R. Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Design 22 (7) (2005) 632-658.

Hassan, S.A., Badr, S.A-N. Differential geometry of self-intersection curves of a parametric surface in R3. Journal of Mathematical and Computational Science, 6 (6), (2016), 1108-1132.

Karaametoglu, S., Aydemir, I. On the transversal intersection curve of spacelike and timelike surfaces in Minkowski 3-sapce. Journal of Science and Arts 16 (4) (2016) 345-356.

Kuhnel, W. Differential geometry: curves-surfaces-manifolds. 4th Edition, Vieweg, Wiesbaden, 2008.

Lopez, R. Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7 (1) (2014) 44-107.

O’Neill, B. Semi-Riemannian geometry with applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York, (1983).

Ozdemir, M., Ergin, A. A. Spacelike Darboux curves in Minkowski 3-space. Differ. Geom. Dyn. Syst. 9 (2007) 131-137.

Ozdemir, M., Ergin, A. A. Non lightlike Darboux curves in Minkowski n-space. Hadronic J. Suppl. 19 (3) (2004) 343-351.

Sanh, Z., Yayh, Y. Non-null intersection curves of timelike surfaces in Lorentz-Minkowski 3-space. International Journal of Engineering and Applied Sciences 1 (3) (2014) 23-26.

Soliman, M. A., Abdel-All, N. H., Hassan, S. A., Badr, S. A.-N. Intersection Curves of Implicit and Parametric Surfaces in R3. Applied Mathematics, 2 (8), (2011), 1019-1026.

Topbas, E.S.Y., Gok, I., Ekmekci, N., Yayh, Y. Darboux frame of a curve lying on a lightlike surface. Mathematical Sciences and Applications E-Notes 4 (2) (2016) 121-130.

Wang, Z., Pei, D. Null darboux developable and pseudo-spherical darboux iamge of null cartan curve in Minkowski 3-space. Hokkaido Mathematical Journal 40 (2011) 219-240.

Ye, X., Maekawa, T. Differential geometry of intersection curves of two surfaces. Comput. Aided Geom. Design 16 (8) (1999) 767-788.

-----------------------------------------------------------

Received: Aug. 21, 2018.

Accepted: Dec. 03, 2018.

Corresponding author: osmar.alessio@uftm.edu.br

------------------------------------------------------------




DOI: http://dx.doi.org/10.17268/sel.mat.2018.02.02

Enlaces refback

  • No hay ningún enlace refback.


Short Title: Sel. mat.

---------------------------------------------------------------------------------------------------------

 ISSN:  2411-1783  Versión Electrónica.                      

---------------------------------------------------------------------------------------------------------------

Derechos reservados © 2014 Departamento de Matemáticas.

Para la distribución y cosecha de los Metadatos de nuestros artículos, usar el Protocolo de Interoperabilidad OAI-PMH:    http://revistas.unitru.edu.pe/index.php/SSMM/oai 

                 

                             E-mail: selecmat@unitru.edu.pe

Selecciones Matemáticas es una revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Attribution-NoComercial-ShareAlike 4.0.