Geolashon (Teloschistes flavicans), a natural yellow dye from the Peruvian Andes: traditional uses, bioactive extraction, and potential applications

Autores

  • Departamento Académico de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), Florida-Cochayoc Highway, Huancucro 2092, Zip code: 12651, Junin.
  • Departamento Académico de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), Florida-Cochayoc Highway, Huancucro 2092, Zip code: 12651, Junin.
  • Departamento Académico de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), Florida-Cochayoc Highway, Huancucro 2092, Zip code: 12651, Junin.
  • Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001–Bangú, Santo André, São Paulo State.
  • Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima.
  • Departamento Académico de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), Florida-Cochayoc Highway, Huancucro 2092, Zip code: 12651, Junin.
  • Departamento de Tecnologia de Alimentos, Universidade Estadual de Campinas, São Paulo.
  • LATSBIO - Laboratorio de Tecnología Supercrítica y Bioproductos, Instituto Científico Amazónico del Perú (ICIAP), Av. Alameda 306, Zip code: 17001, Madre de Dios.

DOI:

https://doi.org/10.17268/sci.agropecu.2023.024

Palavras-chave:

Natural dyes, Bioactive, Lichen dyes, Dye and pigment extraction, Food colors, Non-food dyes

Resumo

Recently, interest in studying pigments from lichens has been aroused due to their bioactive properties and health benefits. The Geolashon (Teloschistes flavicans) is a thousand-year-old lichen from the Peruvian Andes characterized by its yellow filaments, traditionally used by the Peruvian inhabitants as a natural pigment for making handicrafts and medicinal purposes. In this sense, this article aims to compile all the studies on Geolashon as a source of natural yellow pigments, starting from its importance and applications by the Andean population to research on obtaining, characterizing, and properties of its extracts. Although studies on this lichen are limited, it was observed that the obtained from lichen are rich in 3-[1’-(2”,3”-dihydroxy-phenyl)-propyl]-7-hydroxy- chroman-4-one, vicanicin, parietin, other compounds and has antidiabetic, antibacterial, antileukemic, antimicrobial, anticancer and termiticide activity that would be interesting for use in the pharmaceutical, cosmetic, food and agricultural industries, generating added value in the final product. Aspects such as processing, functional properties, and toxicology of the bioactive components of Geolashon must be studied for its correct use.

Referências

Abdel-Lateef, M. A., Albalawi, M. A., Al-Ghamdi, S. N., Mahdi, W. A., Alshehri, S., & El Hamd, M. A. (2023). Determination of metanil yellow dye in turmeric powder using a unique fluorescence Europium doped carbon dots. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 287(P1), 122124. https://doi.org/10.1016/j.saa.2022.122124

Adeel, S., Ahmad, S., Habib, N., Fazal-ur-Rehman, M. R., & Ahmed, B. (2022). Coloring efficacy of Nyctanthes Arbortristis based yellow natural dye for surface-modified wool. Industrial Crops and Products, 188(PA), 115571. https://doi.org/10.1016/j.indcrop.2022.115571

Adeel, S., Habib, N., Arif, S., Rehman, F., Azeem, M., Batool, F., & Amin, N. (2020). Microwave-assisted eco-dyeing of bio mordanted silk fabric using cinnamon bark (Cinnamomum Verum) based yellow natural dye. Sustainable Chemistry and Pharmacy, 17(July), 100306. https://doi.org/10.1016/j.scp.2020.100306

Allen, R. L. (2013). Colour Chemistry. Springer Science & Business Media.

Alvi, T., Asif, Z., & Iqbal Khan, M. K. (2022). Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Bioscience, 46, 101580. https://doi.org/10.1016/J.FBIO.2022.101580

Aparamarta, H. W., Gunawan, S., Ihsanpuro, S. I., Safawi, I., Bhuana, D. S., Mochtar, A. F., & Yusril Izhar Noer, M. (2022). Optimization and kinetic study of biodiesel production from nyamplung oil with microwave-assisted extraction (MAE) technique. Heliyon, 8(8), e10254. https://doi.org/10.1016/j.heliyon.2022.e10254

Avidlyandi, A., Adfa, M., & S Yudha, S. (2021). Antitermite activity of methanol extract of lichen Teloschistes flavicans (Sw) Norman against Coptotermes curvignathus. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012022

Ayele, M., Tesfaye, T., Alemu, D., Limeneh, M., & Sithole, B. (2020). Natural dyeing of cotton fabric with extracts from mango tree: A step towards sustainable dyeing. Sustainable Chemistry and Pharmacy, 17(May), 100293. https://doi.org/10.1016/j.scp.2020.100293

Backes, E., Leichtweis, M. G., Pereira, C., Carocho, M., Barreira, J. C. M., et al. (2020). Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chemistry, 333(February), 127457. https://doi.org/10.1016/j.foodchem.2020.127457

Barrios, C., Fernández-Delgado, M., López-Linares, J. C., García-Cubero, M. T., Coca, M., & Lucas, S. (2022). A techno-economic perspective on a microwave extraction process for efficient protein recovery from agri-food wastes. Industrial Crops and Products, 186(February). https://doi.org/10.1016/j.indcrop.2022.115166

Bhimjiyani, V. H., Borugadda, V. B., Naik, S., & Dalai, A. K. (2021). Enrichment of flaxseed (Linum usitatissimum) oil with carotenoids of sea buckthorn pomace via ultrasound-assisted extraction technique: Enrichment of flaxseed oil with sea buckthorn. Current Research in Food Science, 4, 478–488. https://doi.org/10.1016/J.CRFS.2021.07.006

Bocker, R., & Silva, E. K. (2022). Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chemistry: X, 15(October 2021), 100398. https://doi.org/10.1016/j.fochx.2022.100398

Bogdanova, P., Vakh, C., & Bulatov, A. (2022). A surfactant-mediated microextraction of synthetic dyes from solid-phase food samples into the primary amine-based supramolecular solvent. Food Chemistry, 380(July 2021), 131812. https://doi.org/10.1016/j.foodchem.2021.131812

Boyapati, T., Rana, S. S., & Ghosh, P. (2022). Microwave-assisted extraction of dragon fruit seed oil: Fatty acid profile and functional properties. Journal of the Saudi Society of Agricultural Sciences, xxxx. https://doi.org/10.1016/j.jssas.2022.08.001

Brianceau, S., Turk, M., Vitrac, X., & Vorobiev, E. (2016). High voltage electric discharges assisted extraction of phenolic compounds from grape stems: Effect of processing parameters on flavan-3-ols, flavonols and stilbenes recovery. Innovative Food Science and Emerging Technologies, 35, 67–74.

Bunmusik, W., Suttiarporn, P., Phankaew, T., Thitisut, P., & Seangwattana, T. (2022). The effects of solvent–based ultrasonic–assisted extraction of bioactive compounds and antioxidant activities from pigmented rice bran. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2022.11.391

Carmona, J. C., Robert, P., Vergara, C., & Sáenz, C. (2021). Microparticles of yellow-orange cactus pear pulp (Opuntia ficus-indica) with cladode mucilage and maltodextrin as a food coloring in yogurt. Lwt, 138(November 2020). https://doi.org/10.1016/j.lwt.2020.110672

Chaijan, M., & Panpipat, W. (2021). Pre-neutralized crude palm oil as natural colorant and bioactive ingredient in fish sausage prepared from tilapia (Oreochromis niloticus). Lwt, 135(September 2020), 110289. https://doi.org/10.1016/j.lwt.2020.110289

Chañi-Paucar, L. O., dos Santos, L. C., Scopel, E., Torres-Mayanga, P. C., Hatami, T., & Martínez, J. (2023). Supercritical fluid extraction of bioactive compounds from quinilla (Manilkara bidentata) seed. Journal of Supercritical Fluids, 193(September 2022). https://doi.org/10.1016/j.supflu.2022.105831

Chañi-Paucar, L. O., Flores Johner, J. C., Zabot, G. L., & Meireles, M. A. A. (2022a). Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. The Journal Supercritical Fluids, 181(November 2021), 105494. https://doi.org/10.1016/j.supflu.2021.105494

Chañi-Paucar, L. O., Johner, J. C. F., Hatami, T., & Meireles, M. A. A. (2022b). Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from Baru seed. The Journal of Supercritical Fluids. https://doi.org/https://doi.org/10.1016/j.supflu.2022.105553

Chañi-Paucar, L. O., Santana, Á. L., Albarelli, J. Q., & Meireles, M. A. A. (2022c). Extraction of polyphenols by sub/supercritical based technologies. In Technologies to Recover Polyphenols from AgroFood By-products and Wastes (Issue 2019, pp. 137–168). https://doi.org/10.1016/b978-0-323-85273-9.00006-5

Chañi-Paucar, L. O., Silva, J. W. L., Maciel, M. I. S., & Lima, V. L. A. G. de. (2020). Simplified process of extraction of polyphenols from agroindustrial grape waste. Food Science and Technology, 2061. https://doi.org/10.1590/fst.31120

Chañi-Paucar, L. O., Yali, E. T., Maceda Santivañez, J. C., Garcia, D. A., Jonher, J. C. F., & Meireles, M. A. A. (2021). Supercritical Fluid Extraction from Aguaje (Mauritia flexuosa) Pulp: Overall Yield, Kinetic, Fatty Acid Profile, and Qualitative Phytochemical Profile. The Open Food Science Journal, 13(1), 1–11. https://doi.org/10.2174/1874256402113010001

Chen, B., Zhang, X., Liu, Y., Ma, X., Wang, X., Cao, X., & Lian, L. (2022). Magnetic porous carbons derived from iron-based metal-organic framework loaded with glucose for effective extraction of synthetic organic dyes in drinks. Journal of Chromatography A, 1661, 462716. https://doi.org/10.1016/j.chroma.2021.462716

Cogno, I. S., Gilardi, P., Comini, L., Núñez-Montoya, S. C., Cabrera, J. L., & Rivarola, V. A. (2020). Natural photosensitizers in photodynamic therapy: In vitro activity against monolayers and spheroids of human colorectal adenocarcinoma SW480 cells. Photodiagnosis and Photodynamic Therapy, 31(June), 101852. https://doi.org/10.1016/j.pdpdt.2020.101852

Comini, L. R., Morán Vieyra, F. E., Mignone, R. A., Páez, P. L., Laura Mugas, M., et al. (2017). Parietin: an efficient photo-screening pigment in vivo with good photosensitizing and photodynamic antibacterial effects in vitro. Photochemical and Photobiological Sciences, 16(2), 201–210. https://doi.org/10.1039/C6PP00334F

Csiktusnádi Kiss, G. A., Forgács, E., Cserháti, T., Mota, T., Morais, H., & Ramos, A. (2000). Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. Journal of Chromatography A, 889(1–2), 41–49. https://doi.org/10.1016/S0021-9673(00)00440-4

Darwis, W., Supriati, R., Sipriyadi, Wibowo, R. H., & Al Siddiq, Y. U. (2021). Antibacterial Potency of Lichen Teloschisthes flavicans From Kepahiang District Against Staphylococcus aureus and Pseudomonas aeruginosa. Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020), 14(Kobicinc 2020), 547–552. https://doi.org/10.2991/absr.k.210621.091

de Mayolo, K. K. A. (1989). Peruvian natural dye plants. Economic Botany, 43(2), 181–191. https://doi.org/10.1007/BF02859858

Dewi, S. R., Stevens, L. A., Pearson, A. E., Ferrari, R., Irvine, D. J., & Binner, E. R. (2022). Investigating the role of solvent type and microwave selective heating on the extraction of phenolic compounds from cacao (Theobroma cacao L.) pod husk. Food and Bioproducts Processing, 134, 210–222. https://doi.org/10.1016/j.fbp.2022.05.011

Dillman, K., & Cooper, E. (2010). Purple Is to Dye For (p. 7). USDA, SourDough Notes. http://www.cordovachamber.com.

Dos Santos, P., De Aguiar, A. C., Viganó, J., Boeing, J. S., Visentainer, J. V., & Martínez, J. (2016). Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: Global yield, kinetics and fatty acid composition. Journal of Supercritical Fluids, 107, 75–83. https://doi.org/10.1016/j.supflu.2015.08.018

Durazzo, A., Carocho, M., Heleno, S., Barros, L., Souto, E. B., Santini, A., & Lucarini, M. (2022). Food dyes and health: Literature quantitative research analysis. Measurement: Food, 7, 100050. https://doi.org/10.1016/J.MEAFOO.2022.100050

Echegaray, N., Guzel, N., Kumar, M., Guzel, M., Hassoun, A., & Lorenzo, J. M. (2023). Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chemistry, 404(PA), 134453. https://doi.org/10.1016/j.foodchem.2022.134453

El-Garawani, I., Emam, M., Elkhateeb, W., El-Seedi, H., Khalifa, S., Oshiba, S., Abou-Ghanima, S., & Daba, G. (2020). In vitro antigenotoxic, antihelminthic and antioxidant potentials based on the extracted metabolites from lichen, Candelariella vitellina. Pharmaceutics, 12(5). https://doi.org/10.3390/pharmaceutics12050477

Fang, J., Meng, C., & Zhang, G. (2022). Agricultural waste of Ipomoea batatas leaves as a source of natural dye for green coloration and bio-functional finishing for textile fabrics. Industrial Crops and Products, 177(November 2021), 114440. https://doi.org/10.1016/j.indcrop.2021.114440

Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971. https://doi.org/10.1016/j.envint.2004.02.001

Fraterrigo Garofalo, S., Demichelis, F., Mancini, G., Tommasi, T., & Fino, D. (2022). Conventional and ultrasound-assisted extraction of rice bran oil with isopropanol as solvent. Sustainable Chemistry and Pharmacy, 29(June), 100741. https://doi.org/10.1016/j.scp.2022.100741

Gandía-Herrero, F., & García-Carmona, F. (2013). Biosynthesis of betalains: Yellow and violet plant pigments. Trends in Plant Science, 18(6), 334–343. https://doi.org/10.1016/j.tplants.2013.01.003

Gao, Y., Dong, Q., Zhao, S., Zhao, Y., Zhang, Y., Wang, H., Wang, Y., Wang, W., Wang, L., & Wang, H. (2022). Efficient ultrasound-assisted enzymatic method for extraction of immunostimulant QS-21 from Quillaja saponaria Molina. Industrial Crops and Products, 189(October), 115807. https://doi.org/10.1016/j.indcrop.2022.115807

Garcia-Ortiz, J. D., Flores-Gallegos, A. C., Ascacio-Valdés, J. A., López-Badillo, C. M., Nery-Flores, S. D., Esparza-González, S. C., & Rodríguez-Herrera, R. (2022). Microwave-ultrasound assisted extraction of red corn pigments and their effect on chemical composition and tecno-functional properties. Food Bioscience, 50, 102115. https://doi.org/10.1016/J.FBIO.2022.102115

Gholami, Z., Marhamatizadeh, M. H., Yousefinejad, S., Rashedinia, M., & Mazloomi, S. M. (2021). Vortex-assisted dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent for the simultaneous identification of eight synthetic dyes in jellies and drinks using HPLC-PDA. Microchemical Journal, 170(July), 106671. https://doi.org/10.1016/j.microc.2021.106671

Guiné, R. de P. F., Mendes, M., & Gonçalves, F. (2019). Optimization of bioactive compound’s extraction conditions from beetroot by means of artificial neural networks (ANN). Agricultural Engineering International: CIGR Journal, 21(4), 216–223.

Hausen, B. M. (2001). Contact allergy to balsam of Peru. II. Patch test results in 102 patients with selected balsam of Peru constituents. American Journal of Contact Dermatitis, 12(2), 93–102. https://doi.org/10.1053/ajcd.2001.19314

He, B., Zhang, L. L., Yue, X. Y., Liang, J., Jiang, J., Gao, X. L., & Yue, P. X. (2016). Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chemistry, 204, 70–76. https://doi.org/10.1016/j.foodchem.2016.02.094

He, G., Hou, X., Han, M., Qiu, S., Li, Y., Qin, S., Qiu, B., & Liang, M. (2023). A dilute-and-shoot based SWATH-MS approach for rapid analysis of 23 synthetic dyes in spices. Journal of Food Composition and Analysis, 115(April 2022), 104878. https://doi.org/10.1016/j.jfca.2022.104878

He, Z., Chen, L., Catalan-Dibene, J., Bongers, G., Faith, J. J., Suebsuwong, C., DeVita, R. J., Shen, Z., Fox, J. G., Lafaille, J. J., Furtado, G. C., & Lira, S. A. (2021). Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metabolism, 33(7), 1358-1371.e5. https://doi.org/10.1016/j.cmet.2021.04.015

Henarejos-Escudero, P., Hernández-García, S., Martínez-Rodríguez, P., García-Carmona, F., & Gandía-Herrero, F. (2022). Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine. Food Research International, 162, 111956. https://doi.org/10.1016/J.FOODRES.2022.111956

Huschek, G., Rawel, H. M., Schweikert, T., Henkel-Oberländer, J., & Sagu, S. T. (2022). Characterization and optimization of microwave-assisted extraction of B-phycoerythrin from Porphyridium purpureum using response surface methodology and Doehlert design. Bioresource Technology Reports, 19, 101212. https://doi.org/10.1016/J.BITEB.2022.101212

Imchen, T., & Singh, K. S. (2022). Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. Algal Research, 69(January 2022), 102898. https://doi.org/10.1016/j.algal.2022.102898

Jelonek, Z., Drobniak, A., Mastalerz, M., & Jelonek, I. (2020). Dermal exposure and hair dye: Assessing potential bladder cancer risk from permanent hair dye. Science of the Total Environment, 141267. https://doi.org/10.1016/j.energy.2022.125507

Kamatchi, A. R., Anjali, K. U., Haripriya, S., & Kumar, A. (2022). Microwave-assisted ultrasonication extraction of phytochemical, antioxidant and techno-functional characteristics of pigmented and non-pigmented rice landraces. International Journal of Food Science & Technology. https://doi.org/10.1111/IJFS.16268

Kamboj, A., Chopra, R., Singh, R., Saxena, V., & GV, P. K. (2022). Effect of pulsed electric field parameters on the alkaline extraction of valuable compounds from perilla seed meal and optimization by central composite design approach. Applied Food Research, 2(2), 100240. https://doi.org/10.1016/J.AFRES.2022.100240

Khatun, S., Biswas, S., Binoy, A., Podder, A., Mishra, N., & Bhuniya, S. (2020). Highly chemoselective turn-on fluorescent probe for ferrous (Fe2+) ion detection in cosmetics and live cells. Journal of Photochemistry and Photobiology B: Biology, 209(June), 111943. https://doi.org/10.1016/j.jphotobiol.2020.111943

Kucharska, M., & Grabka, J. (2010). A review of chromatographic methods for determination of synthetic food dyes. Talanta, 80(3), 1045–1051. https://doi.org/10.1016/j.talanta.2009.09.032

Lao, F., Cheng, H., Wang, Q., Wang, X., Liao, X., & Xu, Z. (2020). Enhanced water extraction with high-pressure carbon dioxide on purple sweet potato pigments: Comparison to traditional aqueous and ethanolic extraction. Journal of CO2 Utilization, 40, 101188. https://doi.org/10.1016/J.JCOU.2020.101188

Latos-Brozio, M., & Masek, A. (2020). The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food and Chemical Toxicology, 135(November 2019), 110975. https://doi.org/10.1016/j.fct.2019.110975

Liao, J., Xue, H., & Li, J. (2022). Extraction of phenolics and anthocyanins from purple eggplant peels by multi-frequency ultrasound: Effects of different extraction factors and optimization using uniform design. Ultrasonics Sonochemistry, 90(July), 106174. https://doi.org/10.1016/j.ultsonch.2022.106174

Lourith, N., & Kanlayavattanakul, M. (2023). Sustainable approach to natural makeup cosmetics containing microencapsulated butterfly pea anthocyanins. Sustainable Chemistry and Pharmacy, 32(January), 101005. https://doi.org/10.1016/j.scp.2023.101005

Maulidiyah, M., Suilowati, P. E., Musdalifah, A., Kusmalwaty, T., Imran, I., Azis, T., Watoni, A. H., Hasan, A., Salim, L. O. A., & Nurdin, M. (2021a). Antimicrobial activity of secondary metabolite compounds from lichen Teloschistes flavicans. Journal of Physics: Conference Series, 1763(1). https://doi.org/10.1088/1742-6596/1763/1/012068

Maulidiyah, M., Darmawan, A., Hasan, A., Wibowo, D., Salim, L. O. A., et al. (2020). Isolation, structure elucidation, and antidiabetic test of vicanicin compound from lichen Teloschistes flavicans. Journal of Applied Pharmaceutical Science, 10(11), 001–009. https://doi.org/10.7324/JAPS.2020.10111

Maulidiyah, M., Darmawan, A., Usman, U., Musdalifah, A., Salim, L. O. A., & Nurdin, M. (2021b). Antioxidant activity of secondary metabolite compounds from lichen teloschistes flavicans. Biointerface Research in Applied Chemistry, 11(6), 13878–13884. https://doi.org/10.33263/BRIAC116.1387813884

Miranda, P. H. S., Santos, A. C. dos, Freitas, B. C. B. de, Martins, G. A. de S., Vilas Boas, E. V. de B., & Damiani, C. (2021). A scientific approach to extraction methods and stability of pigments from Amazonian fruits. Trends in Food Science & Technology, 113, 335–345. https://doi.org/10.1016/J.TIFS.2021.04.047

Mussagy, C. U., Oshiro, A. A., Lima, C. A., Amantino, C. F., Primo, F. L., Santos-Ebinuma, V. C., & Herculano, R. D. (2022a). Natural fluorescent red colorants produced by Talaromyces amestolkiae as promising coloring agents for custom-made latex gloves. Journal of Industrial and Engineering Chemistry, 119, 357–366. https://doi.org/10.1016/j.jiec.2022.11.056

Mussagy, C. U., Silva, P. G. P., Amantino, C. F., Burkert, J. F. M., Primo, F. L., Pessoa, A., & Santos-Ebinuma, V. C. (2022b). Production of natural astaxanthin by Phaffia rhodozyma and its potential application in textile dyeing. Biochemical Engineering Journal, 187(September), 108658. https://doi.org/10.1016/j.bej.2022.108658

Nambela, L., Haule, L. V., & Mgani, Q. (2020). A review on source, chemistry, green synthesis and application of textile colorants. Journal of Cleaner Production, 246, 119036. https://doi.org/10.1016/j.jclepro.2019.119036

Nanda, A., & Wasan, A. (2016). Allergic contact dermatitis to balsam of Peru. Annals of Allergy, Asthma and Immunology, 117(2), 208–209. https://doi.org/10.1016/j.anai.2016.06.012

NBN Atlas. (2021). Teloschistes flavicans : Golden Hair-Lichen | NBN Atlas. https://species.nbnatlas.org/species/NBNSYS0000020578

Nguyen, V. T., Pham, T. D., Vu, L. B., Nguyen, V. H., & Tran, N. L. (2020). Microwave-assisted Extraction for Maximizing the Yield of Phenolic Compounds and Antioxidant Capacity from Cacao Pod Husk (Theobroma cacao L.). Current Nutrition & Food Science, 17(2), 225–237. https://doi.org/10.2174/1573401316999200503032017

Nirmal, N. P., Mereddy, R., & Maqsood, S. (2021). Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chemistry, 356(February), 129611. https://doi.org/10.1016/j.foodchem.2021.129611

Nisoa, M., Plodkaew, A., Sirisathitkul, C., Wattanasit, K., Somjit, B., Pacdeepin, P., & Sirisathitkul, Y. (2022). Simulation and experimentation on parameters influencing microwave-assisted extraction of bioactive compounds from Kaempferia parviflora rhizomes. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2022.10.012

Panwar, D., Panesar, P. S., & Chopra, H. K. (2023). Ultrasound-assisted extraction of pectin from Citrus limetta peels: Optimization, characterization, and its comparison with commercial pectin. Food Bioscience, 51, 102231. https://doi.org/10.1016/J.FBIO.2022.102231

Pataro, G., Carullo, D., Falcone, M., & Ferrari, G. (2020). Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innovative Food Science & Emerging Technologies, 63, 102369. https://doi.org/10.1016/J.IFSET.2020.102369

Peets, P., Vahur, S., Kruve, A., Haljasorg, T., & Herodes, K. (2020). Instrumental techniques in the analysis of natural red textile dyes. Journal of Cultural Heritage, 42, 19–27. https://doi.org/10.1016/j.culher.2019.09.002

Pereira, E. C., Da Silva, H. N., Santos, R. A., Sudário, A. P. P., Rodrigues E Silva, A. A., & De Sousa Maia, M. B. (2010). Determination of Teloschistes flavicans (sw) norm anti-inflammatory activity. Pharmacognosy Research, 2(4), 205–210. https://doi.org/10.4103/0974-8490.69102

Pham, T. N., Le, X. T., Pham, V. T., & Le, H. T. (2022). Effects of process parameters in microwave-assisted extraction on the anthocyanin-enriched extract from Rhodomyrtus tomentosa (Ait.) Hassk and its storage conditions on the kinetic degradation of anthocyanins in the extract. Heliyon, 8(6), e09518. https://doi.org/10.1016/j.heliyon.2022.e09518

Pinto, D., Cádiz-Gurrea, M. D. L. L., Silva, A. M., Delerue-Matos, C., & Rodrigues, F. (2020). Cosmetics-food waste recovery. In Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications (pp. 503–528). https://doi.org/10.1016/B978-0-12-820563-1.00004-4

Prokein, M., Dyes, T., Renner, M., & Weidner, E. (2021). Waterless leather dyeing with dense carbon dioxide as solvent for dyes. Journal of Supercritical Fluids, 178(August), 105377. https://doi.org/10.1016/j.supflu.2021.105377

Puértolas, E., Cregenzán, O., Luengo, E., Álvarez, I., & Raso, J. (2013). Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, 136(3–4), 1330–1336. https://doi.org/10.1016/J.FOODCHEM.2012.09.080

Rajha, H. N., Abi-Khattar, A. M., El Kantar, S., Boussetta, N., Lebovka, N., Maroun, R. G., Louka, N., & Vorobiev, E. (2019). Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innovative Food Science & Emerging Technologies, 58, 102212. https://doi.org/10.1016/J.IFSET.2019.102212

Rashid, R., Mohd Wani, S., Manzoor, S., Masoodi, F. A., & Masarat Dar, M. (2022). Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: Optimisation, comparison and bioactivity. Food Chemistry, 398(August 2022), 133871. https://doi.org/10.1016/j.foodchem.2022.133871

Reche, C., Rosselló, C., Dalmau, E., Eim, V., & Simal, S. (2022). Quantification of microstructural changes in artichoke by-products by image analysis after high-power ultrasound-assisted extraction of bioactive compounds. Lwt, 171(July). https://doi.org/10.1016/j.lwt.2022.114127

Reis, R. A., Tischer, C. A., Gorin, P. A. J., & Iacomini, M. (2002). A new pullulan and a branched (1→3)-, (1→6)-linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiology Letters, 210(1), 1–5. https://doi.org/10.1016/S0378-1097(02)00554-2

Richardson, D. H. S. (2019). Medicinal and Other Economic Aspects of Lichens. In CRC Handbook of Lichenology (pp. 93–108). CRC Press. https://doi.org/10.1201/9780429291869-8

Rodríguez, E. F. R., Sevilla, S. R., Pizarro, Y. P., Velásquez, L. P., Espejo, M. R. R., & Tocas, R. A. (2017). Vegetales tintóreos promisorios más utilizados en la región La Libertad, Perú. Arnaldoa, 24(1), 311–332. https://doi.org/10.22497/arnaldoa.241.24114

Rojas, R., Díaz, C., Espinoza, G., Figari, J., & Albán, J. (2016). Plantas Tintores Peruanas (1a Ed.). Universidad Peruana Cayetano Heredia. https://issuu.com/jerimo77/docs/plantas_tint__reas_peruanas

Rovina, K., Prabakaran, P. P., Siddiquee, S., & Shaarani, S. M. (2016). Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. TrAC - Trends in Analytical Chemistry, 85, 47–56. https://doi.org/10.1016/j.trac.2016.05.009

Ruthes, A. C., Komura, D. L., Carbonero, E. R., Cordeiro, L. M. C., Reis, R. A., Sassaki, G. L., Gorin, P. A. J., & Iacomini, M. (2008). Polysaccharides present in cultivated Teloschistes flavicans symbiosis: Comparison with those of the thallus. Plant Physiology and Biochemistry, 46(4), 500–505. https://doi.org/10.1016/j.plaphy.2007.10.018

Sampaio, S. L., Lonchamp, J., Dias, M. I., Liddle, C., Petropoulos, S. A., et al. (2021). Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chemistry, 342, 128526. https://doi.org/10.1016/J.FOODCHEM.2020.128526

Sanjaya, A., Avidlyandi, A., Adfa, M., Ninomiya, M., & Koketsu, M. (2020). A new depsidone from Teloschistes flavicans and the antileukemic activity. Journal of Oleo Science, 69(12), 1591–1595. https://doi.org/10.5650/jos.ess20209

Selberg, S., Vanker, E., Peets, P., Wright, K., Tshepelevitsh, S., et al. (2023). Non-invasive analysis of natural textile dyes using fluorescence excitation-emission matrices. Talanta, 252(February 2022), 123805. https://doi.org/10.1016/j.talanta.2022.123805

Sengar, A. S., Thirunavookarasu, N., Choudhary, P., Naik, M., Surekha, A., Sunil, C. K., & Rawson, A. (2022). Application of power ultrasound for plant protein extraction, modification and allergen reduction – A review. Applied Food Research, 2(2), 100219. https://doi.org/10.1016/j.afres.2022.100219

Shameera Ahamed, T. K., Rajan, V. K., Sabira, K., & Muraleedharan, K. (2019). DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Computational Biology and Chemistry, 80(August 2018), 66–78. https://doi.org/10.1016/j.compbiolchem.2019.03.009

Sharayei, P., Azarpazhooh, E., Zomorodi, S., & Ramaswamy, H. S. (2019). Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT, 101, 342–350. https://doi.org/10.1016/J.LWT.2018.11.031

Sharma, Maanas, & Dash, K. K. (2022). Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. Innovative Food Science & Emerging Technologies, 75, 102913. https://doi.org/10.1016/J.IFSET.2021.102913

Sharma, Minaxi, Hussain, S., Shalima, T., Aav, R., & Bhat, R. (2022). Valorization of seabuckthorn pomace to obtain bioactive carotenoids: An innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (edible oils). Industrial Crops and Products, 175, 114257. https://doi.org/10.1016/J.INDCROP.2021.114257

Shukla, P., & Upreti, D. K. (2015). Lichen dyes: Current scenario and future prospects. In Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2 (pp. 209–230). Springer India. https://doi.org/10.1007/978-81-322-2235-4_12/FIGURES/10

Singh, S., Maurya, I. C., Sharma, S., Kushwaha, S. P. S., Srivastava, P., & Bahadur, L. (2021). Application of new natural dyes extracted from Nasturtium flowers (Tropaeolum majus) as photosensitizer in dye-sensitized solar cells. Optik, 243(June), 167331. https://doi.org/10.1016/j.ijleo.2021.167331

Song, Z., Wei, X., Xie, M., Zhao, X., Sun, J., Mao, Y., Wang, X., & Wang, W. (2022). Study on the microwave extraction process and product distribution of essential oils from citrus peel. Chemical Engineering and Processing - Process Intensification, 171, 108726. https://doi.org/10.1016/J.CEP.2021.108726

Sun, H., Huang, Y., Chen, Y., Liu, X., & Leng, X. (2023). Effects of curcumin, phycocyanin, or modified lycopene colorants on the physicochemical and sensory properties of whey protein – cellulose nanocrystal packaging films. Food Chemistry, 412(17), 135541. https://doi.org/10.1016/j.foodchem.2023.135541

Surana, K., Bhattacharya, B., & Majumder, S. (2021). Extraction of yellow fluorescent Caesalpinia sappan L. dye for photovoltaic application. Optical Materials, 119(March), 111347. https://doi.org/10.1016/j.optmat.2021.111347

Teixeira, V. M. C., da Silva, R. F. G., Gonçalves, O. H., Pereira, C., Barros, L., Ferreira, I. C. F. R., Bona, E., & Leimann, F. V. (2022). Chemometric approaches to evaluate the substitution of synthetic food dyes by natural compounds: The case of nanoencapsulated curcumin, spirulina, and hibiscus extracts. Lwt, 154. https://doi.org/10.1016/j.lwt.2021.112786

Tian, Y., Lu, Y., Zhang, Y., Hou, X., & Zhang, Y. (2022). Extraction and characterization of natural colorant from Melia azedarach bark and its utilization in dyeing and finishing of wool. Sustainable Chemistry and Pharmacy, 27(March), 100647. https://doi.org/10.1016/j.scp.2022.100647

Tiwari, A., Joshi, M., Salvi, N., Gupta, D., Gandhi, S., Rajpoot, K., & Tekade, R. K. (2022). Toxicity of pharmaceutical azo dyes. In Pharmacokinetics and Toxicokinetic Considerations - Vol II (pp. 569–603). https://doi.org/10.1016/B978-0-323-98367-9.00004-4

Toledo-Merma, P. R., Cornejo-Figueroa, M. H., Crisosto-Fuster, A. R., Strieder, M. M., Chañi-Paucar, L. O., et al. (2022). Phenolic Compounds Recovery from Pomegranate (Punica granatum L.) By-Products of Pressurized Liquid Extraction. Foods, 11, 1070.

--Tumpanuvatr, T., & Jittanit, W. (2022). Physical properties, total phenolic contents, and antioxidant activities of refrigerated ready-to-eat brown rice cooked by ohmic and conventional methods: Effect of gellan gum. International Journal of Food Properties, 25(1), 2381–2395. https://doi.org/10.1080/10942912.2022.2135538

Tunca Koyun, M., Sirin, S., Aslim, B., Taner, G., & Nigdelioglu Dolanbay, S. (2022). Characterization of prodigiosin pigment by Serratia marcescens and the evaluation of its bioactivities. Toxicology in Vitro, 82, 105368. https://doi.org/10.1016/J.TIV.2022.105368

Vázquez-Ortega, F., Lagunes, I., & Trigos, Á. (2020). Cosmetic dyes as potential photosensitizers of singlet oxygen generation. Dyes and Pigments, 176(October 2019). https://doi.org/10.1016/j.dyepig.2020.108248

Wang, J. X., Xiao, X. H., & Li, G. K. (2008). Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. Journal of Chromatography A, 1198–1199(1–2), 45–53. https://doi.org/10.1016/J.CHROMA.2008.05.045

Wei, L., Yu, X., Li, H., Zhu, M., Pu, D., Lu, Q., Bao, Y., & Zu, Y. (2023). Optimization of solvent-free microwave extraction of essential oil from the fresh peel of Citrus medica L. var. arcodactylis Swingle by response surface methodology, chemical composition and activity characterization. Scientia Horticulturae, 309, 111663. https://doi.org/10.1016/J.SCIENTA.2022.111663

Yadav, S., Tiwari, K. S., Gupta, C., Tiwari, M. K., Khan, A., & Sonkar, S. P. (2023). A brief review on natural dyes, pigments: Recent advances and future perspectives. Results in Chemistry, 5(December 2022), 100733. https://doi.org/10.1016/j.rechem.2022.100733

Yamamoto, Y., Hara, K., Kawakami, H., & Komine, M. (2015). Lichen substances and their biological activities. In Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2. Springer India. https://doi.org/10.1007/978-81-322-2235-4_10/FIGURES/2

Yan, X., Hong, L., Pei, S., Hamilton, A., Sun, H., Yang, R., Liu, A., & Yang, L. (2021). A natural yellow colorant from Buddleja officinalis for dyeing hemp fabric. Industrial Crops and Products, 171(July), 113968. https://doi.org/10.1016/j.indcrop.2021.113968

Yusuf, M. (2020). A Review on Trends and Opportunity in Edible Lichens. In Lichen‐Derived Products (pp. 189–201). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119593249.CH8

Zhang, W., Wang, X., Zhang, Y., Wu, S., & Liu, R. (2022a). Flavonoid dyes from vine tea (Ampelopsis grossedentata) have excellent bioactive properties for dyeing and finishing of silk fabrics. Sustainable Chemistry and Pharmacy, 28, 100708. https://doi.org/10.1016/J.SCP.2022.100708

Zhang, X., Wang, S., Wu, Q., Battino, M., Giampieri, F., Bai, W., & Tian, L. (2022b). Recovering high value-added anthocyanins from blueberry pomace with ultrasound-assisted extraction. Food Chemistry: X, 16(October), 100476. https://doi.org/10.1016/j.fochx.2022.100476

Zhang, Y., Liang, G., Tang, L., Li, D., Zhan, J., Song, D., Kelly, T., Xu, H., & Chen, Z. (2023). Tunable optical nonlinearity and self-collimation of light in food dye solutions. Optics Communications, 528(June 2022), 129010. https://doi.org/10.1016/j.optcom.2022.129010

Zoric, M., Banozic, M., Aladic, K., Vladimir-Knezevic, S., & Jokic, S. (2022). Supercritical CO2 extracts in cosmetic industry: Current status and future perspectives. Sustainable Chemistry and Pharmacy, 27(April), 100688 Contents. https://doi.org/10.1016/j.scp.2022.100688

Downloads

Publicado

2023-07-10

Como Citar

Padilla Pacahuala, G. ., Barzola Ollero, E. A. ., Quincho Estares, J. I. ., Maceda Santivañez, J. C. ., Quispe Santivañez, G. W. ., Chagua Rodriguez, P. ., Salvador-Reyes, R. ., & Chañi-Paucar, L. O. . (2023). Geolashon (Teloschistes flavicans), a natural yellow dye from the Peruvian Andes: traditional uses, bioactive extraction, and potential applications. Scientia Agropecuaria, 14(2), 269-285. https://doi.org/10.17268/sci.agropecu.2023.024

Edição

Seção

Artículos de Revisión