Estimación de la evapotranspiración a partir de imágenes de alta resolución de VANT para sistemas de riego en arrozales de la costa norte de Perú

Autores

DOI:

https://doi.org/10.17268/sci.agropecu.2024.001

Palavras-chave:

Oryza sativa, alternancia humedecimiento y secado, estrés hídrico, balance de energía, vehículo aéreo no tripulado, teledetección

Resumo

Ante la creciente escasez del agua para la agricultura, el incremento de la demanda de alimentos y los futuros escenarios de sequía que nos plantea el cambio climático es indispensable diseñar nuevas tecnologías que contribuyan a un menor consumo de agua. En esta investigación se han empleado imágenes de alta resolución para estimar la evapotranspiración en arrozales aplicando el modelo de balance de energía METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration). Para ello, se monitorizaron 5900 m2 de cultivo bajo riego por inundación continua (IC) y 2600 m2 bajo la técnica de riego de alternancia humedecimiento y secado (AWD, por sus siglas en inglés), además de algunas parcelas con filtración lateral. Se realizaron 10 vuelos entre las etapas de macollamiento y floración, cinco vuelos con un VANT Matrice 210 con una cámara multiespectral Parrot Sequoia, y cinco vuelos con un Matrice 300 RTK equipado con una cámara térmica H20T. Se colectó información de campo de los índices de vegetación (NDVI e IAF), y lecturas de un radiómetro, para ajustar información de las imágenes multiespectrales y térmicas, respectivamente; y obtener los componentes del balance de energía en superficie. Se obtuvo valores medios para evapotranspiración del cultivo (ETc) de 6,34 ±1,49 y 5,84 ± 0,41 mm d-1 para riego IC y riego AWD, respectivamente, obteniéndose un ahorro de agua del 42% con una reducción del rendimiento en 14%, proporcionando una guía para la gestión adecuada del riego, sin embargo, se sugiere utilizar el modelo para optimizar el rendimiento obteniendo umbrales críticos para la aplicación óptima de AWD frente a la escasez del recurso hídrico.

Referências

Acharya, B., & Sharma, V. (2021). Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region. In Remote Sensing, 13(9), 1822.

Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., & Robison, C. W. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395–406.

Allen, R., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011–4027.

Bastiaanssen, W., Menenti, M., Feddes, R., & Holtslag, A. (1998). A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212–213, 198–212.

Bhattarai, N., Quackenbush, L. J., Im, J., & Shaw, S. B. (2017). A new optimized algorithm for automating endmember píxel selection in the SEBAL and METRIC models. Remote Sensing of Environment, 196, 178–192.

Cheng, H., Shu, K., Zhu, T., Wang, L., Liu, X., Cai, W., Qi, Z., & Feng, S. (2022). Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields. Journal of Cleaner Production, 349, 131487.

Chu, G., Chen, T., Chen, S., Xu, C., Wang, D., & Zhang, X. (2018). The effect of alternate wetting and severe drying irrigation on grain yield and water use efficiency of Indica-japonica hybrid rice (Oryza sativa L.). Food and Energy Security, 7(2), e00133.

Djaman, K., Rudnick, D. R., Moukoumbi, Y. D., Sow, A., & Irmak, S. (2019). Actual evapotranspiration and crop coefficients of irrigated lowland rice (Oryza sativa L.) under semiarid climate. Italian Journal of Agronomy, 14(1), 19-25.

De la Cruz, K. M. S., Ella, V. B., & Lampayan, R. M. (2022). A coupled surface-subsurface flow model for simulating soil-water dynamics in lowland rice field under alternate wetting and drying conditions. Agricultural Water Management, 265, 107541.

FAOSTAT. 2023. Datos sobre alimentación y agricultura. División de Estadística de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). www.fao.org/faostat/en/#data/QC.

Fan, L., Gao, Y., Brück, H., & Bernhofer, Ch. (2009). Investigating the relationship between NDVI and IAF in semi-arid grassland in Inner Mongolia using in-situ measurements. Theoretical and Applied Climatology, 95(1-2), 151-156.

Fornasiero, A., Wing, R. A., & Ronald, P. (2022). Rice domestication. Current Biology, 32(1), R20-R24

Gao, S., Gu, Q., Gong, X., Li, Y., Yan, S., & Li, Y. (2023). Optimizing water-saving irrigation schemes for rice (Oryza sativa L.) using DSSAT-CERES-Rice model. International Journal of Agricultural and Biological Engineering, 16(2), 142-151.

Garcia, S., Martinez, L. (2009). Satellite image based method for rice (Oryza sativa L.) crop identification. Agronomía Colombiana 28(2), 281-290.

Gonzalez, M., & Mayorga-Ruíz, Z. L. (2018). Normalized difference vegetation index for rice management in El Espinal, Colombia. DYNA, 85(205), 47-56.

Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., & Friborg, T. (2016), Estimating Evaporation with Thermal UAV Data and Two-source Energy Balance Models. Hydrol. Earth Syst. Sci., 20, 697–713.

Hussain, Z., Wang, Z., Wang, J., Yang, H., Arfan, M., Hassan, D., Wang, W., Azam, M. I., & Faisal, M. (2022). A comparative Appraisal of Classical and Holistic Water Scarcity Indicators. Water Resources Management, 36(3), 931-950.

Ishfaq, M., Farooq, M., Zulfiqar, U., Hussain, S., Akbar, Ahmad, N., Nawaz, A., & Ahmad Anjum, S. (2020). Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural Water Management, 241, 1-22.

Jiang, Y., Carrijo, D., Huang, S., Chen, J., Balaine, N., Zhang, W., Groenigen, K., & Linquist, B. (2019). Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 234, 47-54.

Lee, Y., & Kim, S. (2016). The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sensing, 8(12), 983.

Liu, X., Xu, J., Yang, S., & Zhang, J. (2018). Rice evapotranspiration at the field and canopy scales under water-saving irrigation. Meteorology and Atmospheric Physics, 130(2), 227-240.

Mendoza, C, Ramírez, C, Ojeda, W, Instituto Mexicano de Tecnología del Agua, Flores, H, & Colegio de Postgraduados. (2017). Estimation of leaf area index and yield of greenhouse-grown poblano pepper. Ingeniería Agrícola y Biosistemas, 9(1), 37-50.

Mote, K., Rao, V. P., Ramulu, V., Kumar, K. A., & Devi, M. U. (2022). Performance of rice (Oryza sativa (L.)) under AWD irrigation practice—A brief review. Paddy and Water Environment, 20(1), 1-21.

Morton, C. G., Huntington, J. L., Pohll, G. M., Allen, R. G., Mcgwire, K. C., & Bassett, S. D. (2013). Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. Journal of the American Water Resources Association, 49(3), 549–562.

Nassar, A., Torres‐Rua, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., Nieto, H., Alsina, M. M., White, W., McKee, L., Coopmans, C., Sanchez, L., & Dokoozlian, N. (2021). Assessing daily evapotranspiration methodologies from one‐time‐of‐day suas and ec information in the grapex project. Remote Sensing, 13(15), 2887.

Neira, E., Ramos-Fernández, L., & Ramón, L. (2020). Coefficient of cropping (Kc) of rice from drain lysimeter in The Molina, Lima-Perú. IDESIA (Chile). Lima-Perú. 38(1), 1-7

Niu, H., Hollenbeck, D., Zhao, T., Wang, D., & Chen, Y. (2020). Evapotranspiration estimation with small uavs in precision agriculture. Sensors, 20(22), 1–28.

Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C., Ahumada-Orellana, L., Zuñiga, M., & Sepúlveda, D. (2016). Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV)

Ouda, S., & Zohry, A. E. H. (2022). Water-Smart Practices to Manage Water Scarcity. En S. Ouda & A. E.-H. Zohry, Climate-Smart Agriculture (pp. 3-26). Springer International Publishing.

Pintér, K., & Nagy, Z. (2022). Building a UAV Based System to Acquire High Spatial Resolution Thermal Imagery for Energy Balance Modelling. Sensors, 22(9), 3251.

Porras, R., Ramos, L., Ojeda, W., & Ontiveros, R. (2020). Performance assessment of the AquaCrop model to estimate rice yields under alternate wetting and drying irrigation in the coast of Peru. Scientia Agropecuaria, 11(3), 309 – 321.

Quille, J., Ramos-Fernández, L., & Ontiveros, R. (2021). Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes RPA. Asociación Española de Teledetección, 58, 23-38.

Rahman, M. M., Hasan, S., Ahmed, Md. R., & Adham, A. K. M. (2022). Recycling deep percolated water in continuously flooding irrigated rice fields to mitigate water scarcity. Paddy and Water Environment, 20, 449–466.

Ramírez-Cuesta, J.M., Allen, R.G., Zarco-Tejada, P.J., Kilic, A., Santos, C., & Lorite, I.J. 2019. Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. International Journal of Applied Earth Observation and Geoinformation, 7, 88-102.

Río, O., Espinoza, T., Sáenz, A., & Córtes, F. (2019). Levantamientos Topográficos con Drones. Revista Ciencia, Ingeniería y Desarrollo Tec Lerdo, 1(5), 15-19.

Roy, D., Hossain, Md. B., Pranto, M. R. B. H., & Islam, Md. T. (2022). Drought Management by Integrated Approaches in T. Aman Rice Season to Escalate Rice Productivity in Drought Prone Regions of Bangladesh. En G. M. Tarekul Islam, S. Shampa, & A. I. A. Chowdhury (Eds.), Water Management: A View from Multidisciplinary Perspectives (pp. 351-364). Springer International Publishing.

Saha, S., Ahmmed R., & Jahan N. (2022). Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of Sebal and Metric Models. In: Tarekul Islam GM, Shampa S., Chowdhury AIA (eds) Water Management: A View from Multidisciplinary Perspectives. Springer, Cham. 365 – 383.

Sawadogo, A., Kouadio, L., Traoré, F., Zwart, S. J., Hessels, T., & Gündoğdu, K. S. (2020). Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS International Journal of Geo-Information, 9(8), 484.

Sisheber, B, Marshall, M, Mengistu, D, & Nelson, A. (2022). Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation, 106, 102670.

Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226, 105805.

Taherparvar, M., & Pirmoradian, N. (2018). Estimation of Rice Evapotranspiration Using Reflective Images of Landsat Satellite in Sefidrood Irrigation and Drainage Network. Rice Science, 25(2), 111-116.

Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226, 105805.

Torres-Rua, A. (2017). Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature. Sensors, 17(7), 1499.

Wei, G., Cao, J., Xie, H., Xie, H., Yang, Y., Wu, C., Cui, Y., & Luo, Y. (2022). Spatial-Temporal Variation in Paddy Evapotranspiration in Subtropical Climate Regions Based on the SEBAL Model: A Case Study of the Ganfu Plain Irrigation System, Southern China. Remote Sensing, 14(5), 1201.

Wei, J., Cui, Y., & Luo, Y. (2023). Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation. Agricultural Water Management, 278, 108141.

Yu, Q., Cui, Y., Han, H., & Liao, B. (2023). Modelling water consumption and nitrogen loss in paddy fields with an improved ORYZA model. Field Crops Research, 292, 108828

Zobeidi, T., Yaghoubi, J., & Yazdanpanah, M. (2022). Farmers’ incremental adaptation to water scarcity: An application of the model of private proactive adaptation to climate change (MPPACC). Agricultural Water Management, 264, 10752.

Publicado

2024-02-05

Como Citar

Ramos-Fernandez, L., Quispe-Tito, D., Altamirano-Gutiérrez, L., Cruz-Grimaldo, C., Quille-Mamani, J. A., Carbonell-Rivera, J. P., Torralba, J., & Ruiz, L. Ángel. (2024). Estimación de la evapotranspiración a partir de imágenes de alta resolución de VANT para sistemas de riego en arrozales de la costa norte de Perú. Scientia Agropecuaria, 15(1), 7-21. https://doi.org/10.17268/sci.agropecu.2024.001

Edição

Seção

Artículos originales

Artigos mais lidos pelo mesmo(s) autor(es)